Molecular Autonomous Pathfinder Using Deep Reinforcement Learning

被引:0
|
作者
Nomura, Ken-ichi [1 ]
Mishra, Ankit [1 ]
Sang, Tian [1 ]
Kalia, Rajiv K. [1 ]
Nakano, Aiichiro [1 ]
Vashishta, Priya [1 ]
机构
[1] Univ Southern Calif, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 19期
关键词
SILICA GLASS; FAST DIFFUSION; WATER; DYNAMICS; REAXFF; GAME; GO;
D O I
10.1021/acs.jpclett.4c00438
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Diffusion in solids is a slow process that dictates rate-limiting processes in key chemical reactions. Unlike crystalline solids that offer well-defined diffusion pathways, the lack of similar structural motifs in amorphous or glassy materials poses great challenges in bridging the slow diffusion process and material failures. To tackle this problem, we propose an AI-guided long-term atomistic simulation approach: molecular autonomous pathfinder (MAP) framework based on deep reinforcement learning (DRL), where the RL agent is trained to uncover energy efficient diffusion pathways. We employ a Deep Q-Network architecture with distributed prioritized replay buffer, enabling fully online agent training with accelerated experience sampling by an ensemble of asynchronous agents. After training, the agents provide atomistic configurations of diffusion pathways with their energy profile. We use a piecewise nudged elastic band to refine the energy profile of the obtained pathway and the corresponding diffusion time on the basis of transition-state theory. With the MAP framework, we demonstrate atomistic diffusion mechanisms in amorphous silica with time scales comparable to experiments.
引用
收藏
页码:5288 / 5294
页数:7
相关论文
共 50 条
  • [31] Autonomous Driving for Natural Paths Using an Improved Deep Reinforcement Learning Algorithm
    Tseng, Kuo-Kun
    Yang, Hong
    Wang, Haoyang
    Yung, Kai Leung
    Lin, Regina Fang-Ying
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (06) : 5118 - 5128
  • [32] Driverless Car: Autonomous Driving Using Deep Reinforcement Learning In Urban Environment
    Fayjie, Abdur R.
    Hossain, Sabir
    Oualid, Doukhi
    Lee, Deok-Jin
    2018 15TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2018, : 896 - 901
  • [33] Turbulence-driven Autonomous Stock Trading using Deep Reinforcement Learning
    Jaggi, Ramneet
    Abbas, Muhammad Naveed
    Dwivedi, Rahul
    Manzoor, Jawad
    Asghar, Mamoona Naveed
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [34] Autonomous Emergency Operation of Nuclear Power Plant Using Deep Reinforcement Learning
    Lee, Daeil
    Kim, Jonghyun
    ADVANCES IN ARTIFICIAL INTELLIGENCE, SOFTWARE AND SYSTEMS ENGINEERING (AHFE 2021), 2021, 271 : 522 - 531
  • [35] AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning
    Tallamraju, Rahul
    Saini, Nitin
    Bonetto, Elia
    Pabst, Michael
    Liu, Yu Tang
    Black, Michael J.
    Ahmad, Aamir
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) : 6678 - 6685
  • [36] Towards Autonomous VNF Auto-scaling using Deep Reinforcement Learning
    Soto, Paola
    De Vleeschauwer, Danny
    Camelo, Miguel
    De Bock, Yorick
    De Schepper, Koen
    Chang, Chia-Yu
    Hellinckx, Peter
    Botero, Juan F.
    Latre, Steven
    2021 EIGHTH INTERNATIONAL CONFERENCE ON SOFTWARE DEFINED SYSTEMS (SDS), 2021, : 74 - 81
  • [37] Autonomous design of noise-mitigating structures using deep reinforcement learning
    Gebrekidan, Semere B.
    Marburg, Steffen
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 156 (01): : 151 - 163
  • [38] Autonomous drifting using reinforcement learning
    Orgován L.
    Bécsi T.
    Aradi S.
    Periodica Polytechnica Transportation Engineering, 2021, 49 (03): : 292 - 300
  • [39] ScanBot: Autonomous Reconstruction via Deep Reinforcement Learning
    Cao, Hezhi
    Xia, Xi
    Wu, Guan
    Hu, Ruizhen
    Liu, Ligang
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (04):
  • [40] Autonomous Braking System via Deep Reinforcement Learning
    Chae, Hyunmin
    Kang, Chang Mook
    Kim, ByeoungDo
    Kim, Jaekyum
    Chung, Chung Choo
    Choi, Jun Won
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,