Algebraic independence and linear difference equations

被引:1
|
作者
Adamczewski, Boris [1 ]
Dreyfus, Thomas [2 ]
Hardouin, Charlotte [3 ]
Wibmer, Michael [4 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, France
[2] Univ Strasbourg, Inst Rech Math Avancee, F-67084 Strasbourg, France
[3] Univ Paul Sabatier, Inst Math Toulouse, F-31062 Toulouse, France
[4] Graz Univ Technol, Inst Anal & Number Theory, A-8010 Graz, Austria
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
Linear difference equations; q-difference; Mahler functions; algebraic independence;
D O I
10.4171/JEMS/1316
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider pairs of automorphisms (0, a) acting on fields of Laurent or Puiseux series: a: x 7! q2x), and of Mahler operators (0: x 7! xp1 , a: x 7! xp2). Given a solution f to a linear 0-equation and a solution g to an algebraic a-equation, both transcendental, we show that f and g are algebraically independent over the field of rational functions, assuming that the corresponding parameters are sufficiently independent. As a consequence, we settle a conjecture about Mahler functions put forward by Loxton and van der Poorten in 1987. We also give an application to the algebraic independence of q-hypergeometric functions. Our approach provides a general strategy to study this kind of question and is based on a suitable Galois theory: the a-Galois theory of linear 0-equations.
引用
收藏
页码:1899 / 1932
页数:34
相关论文
共 50 条