Nanorod Diffusion near the Solid-Liquid Interface with Varied Wall Nonuniformity

被引:0
|
作者
Yang, Jingbin [1 ]
Yang, Lijun [1 ,2 ]
Dong, Ruo-Yu [1 ,2 ]
机构
[1] Beihang Univ, Sch Astronaut, Beijing 100191, Peoples R China
[2] Beihang Univ, Ningbo Inst Technol, Aircraft & Prop Lab, Ningbo 315100, Peoples R China
基金
中国国家自然科学基金;
关键词
ANOMALOUS DIFFUSION; SURFACE-ROUGHNESS; GAS-FLOW; NANOPARTICLES; ROTATION; MOTION; PARTICLES; TRANSPORT;
D O I
10.1021/acs.langmuir.4c01570
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The complex diffusion behaviors of rod-shaped nanoparticles near the solid-liquid interface are closely related to various biological processes and technological applications. Despite recent advancements in understanding the diffusion dynamics of nanoparticles near some specific solid-liquid interfaces, systematical studies to tune the interfacial interaction or fabricating nonuniform wall to see their effects on the nanorod (NR) diffusion are still lacking. This work utilized molecular dynamics simulations to investigate the rotational and translational diffusion dynamics of a single NR near the solid-liquid interface. We constructed a patterned wall featuring adjustable nonuniformity, which was accomplished by modifying the interaction between NR and the wall, noting that the resulting nonuniformity limits both the translational and rotational diffusion of NR, evident from decreases in diffusion coefficients and exponents. By trajectory analysis, we categorized the diffusion modes of NRs near the patterned wall with varied nonuniformities into three types: Fickian diffusion, desorption-mediated flight, and in-plane diffusion. Furthermore, energy analysis based on the adsorption-desorption mechanism has demonstrated that the three diffusion states are driven by interactions between the NR and the wall, which are primarily influenced by rotational diffusion. These results could significantly deepen the understanding of anisotropic nanoparticle interfacial diffusion and would provide new insights into the transport mechanisms of nanoparticles within confined environments.
引用
收藏
页码:14110 / 14117
页数:8
相关论文
共 50 条
  • [21] Adsorption of nanoparticles at the solid-liquid interface
    Brenner, Thorsten
    Paulus, Michael
    Schroer, Martin A.
    Tiemeyer, Sebastian
    Sternemann, Christian
    Moeller, Johannes
    Tolan, Metin
    Degen, Patrick
    Rehage, Heinz
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 374 : 287 - 290
  • [22] POLYMER ADSORPTION AT SOLID-LIQUID INTERFACE
    KILLMANN, E
    CHEMIE INGENIEUR TECHNIK, 1974, 46 (18) : 767 - 769
  • [23] DYNAMICS OF THE HELIUM SOLID-LIQUID INTERFACE
    THOULOUZE, D
    CASTAING, B
    PUECH, L
    AIP CONFERENCE PROCEEDINGS, 1983, (103) : 357 - 370
  • [24] PHOTOCHEMICAL PROCESSES AT THE SOLID-LIQUID INTERFACE
    KAVANAGH, RJ
    THOMAS, JK
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 208 : 150 - COLL
  • [25] DESCRIPTION OF MELTING AND SOLID-LIQUID INTERFACE
    BOLLING, GF
    CANADIAN METALLURGICAL QUARTERLY, 1969, 8 (02) : 183 - &
  • [26] Immobile layer at the solid-liquid interface
    Bikerman, JJ
    JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (12): : 880 - 880
  • [27] Conditions of compatibility for the solid-liquid interface
    Baldoni, F
    Rajagopal, KR
    QUARTERLY OF APPLIED MATHEMATICS, 1997, 55 (03) : 401 - 420
  • [28] Chemical Identification at the Solid-Liquid Interface
    Soengen, Hagen
    Marutschke, Christoph
    Spijker, Peter
    Holmgren, Eric
    Hermes, Ilka
    Bechstein, Ralf
    Klassen, Stefanie
    Tracey, John
    Foster, Adam S.
    Kuehnle, Angelika
    LANGMUIR, 2017, 33 (01) : 125 - 129
  • [29] Structure of Solid-Liquid Interface and Tribology
    Hirayama, Tomoko
    Zairyo/Journal of the Society of Materials Science, Japan, 2024, 73 (09) : 691 - 696
  • [30] PELTIER COEFFICIENT AT A SOLID-LIQUID INTERFACE
    OCONNOR, JR
    JOURNAL OF APPLIED PHYSICS, 1960, 31 (09) : 1690 - 1691