Broadening the audience for science engagement with machine-learning techniques

被引:0
|
作者
Crettaz von Roten, Fabienne [1 ]
机构
[1] Univ Lausanne, Inst Sport Sci, Lausanne, Switzerland
关键词
public engagement with science and technology; non-public; machine learning; S&T museum; science communication;
D O I
10.3389/fcomm.2024.1382952
中图分类号
G2 [信息与知识传播];
学科分类号
05 ; 0503 ;
摘要
In Switzerland, the need to engage the public in science is rooted in the political system with its tools of initiatives, therefore the broadening of the audience is critically important. Using the 2021 Science and Technology Eurobarometer, we propose solutions by using machine-learning techniques which identified patterns of engagement and the interaction of sociodemographic characteristics that constitute the prediction (1) of lowest level of science engagement and (2) of non-visitors to the science and technology museum. The techniques allow a more precise targeting than traditional segmenttion analyses.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Machine-learning techniques and their applications in manufacturing
    Pham, D. T.
    Afify, A. A.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2005, 219 (05) : 395 - 412
  • [2] Machine-Learning Techniques for Detecting Attacks in SDN
    Elsayed, Mahmoud Said
    Nhien-An Le-Khac
    Dev, Soumyabrata
    Jurcut, Anca Delia
    [J]. PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 277 - 281
  • [3] A Survey on Machine-Learning Techniques in Cognitive Radios
    Bkassiny, Mario
    Li, Yang
    Jayaweera, Sudharman K.
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2013, 15 (03): : 1136 - 1159
  • [4] Advanced machine-learning techniques in drug discovery
    Elbadawi, Moe
    Gaisford, Simon
    Basit, Abdul W.
    [J]. DRUG DISCOVERY TODAY, 2020, 26 (03) : 769 - 777
  • [6] DVFS Binning Using Machine-Learning Techniques
    Chang, Keng-Wei
    Huang, Chun-Yang
    Mu, Szu-Pang
    Huang, Jian-Min
    Chen, Shi-Hao
    Chao, Mango C-T
    [J]. 2018 IEEE INTERNATIONAL TEST CONFERENCE IN ASIA (ITC-ASIA 2018), 2018, : 31 - 36
  • [7] Machine-learning techniques for macromolecular crystallization data
    Gopalakrishnan, V
    Livingston, G
    Hennessy, D
    Buchanan, B
    Rosenberg, JM
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 : 1705 - 1716
  • [8] Machine-Learning Methods for Computational Science and Engineering
    Frank, Michael
    Drikakis, Dimitris
    Charissis, Vassilis
    [J]. COMPUTATION, 2020, 8 (01)
  • [9] Machine-Learning Metacomputing for Materials Science Data
    Steuben, J.C.
    Geltmacher, A.B.
    Rodriguez, S.N.
    Birnbaum, A.J.
    Graber, B.D.
    Rawlings, A.K.
    Iliopoulos, A.P.
    Michopoulos, J.G.
    [J]. Journal of Computing and Information Science in Engineering, 2024, 24 (11)
  • [10] Citizen Science as an Ecosystem of Engagement: Implications for Learning and Broadening Participation
    Allf, Bradley C.
    Cooper, Caren B.
    Larson, Lincoln R.
    Dunn, Robert R.
    Futch, Sara E.
    Sharova, Maria
    Cavalier, Darlene
    [J]. BIOSCIENCE, 2022, 72 (07) : 651 - 663