DEAttentionDTA: protein-ligand binding affinity prediction based on dynamic embedding and self-attention

被引:0
|
作者
Chen, Xiying [1 ]
Huang, Jinsha [1 ]
Shen, Tianqiao [1 ]
Zhang, Houjin [1 ]
Xu, Li [1 ]
Yang, Min [1 ]
Xie, Xiaoman [1 ]
Yan, Yunjun [1 ]
Yan, Jinyong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Key Lab Mol Biophys, Minist Educ, 1037 Luoyu Rd, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
KINASE;
D O I
10.1093/bioinformatics/btae319
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Predicting protein-ligand binding affinity is crucial in new drug discovery and development. However, most existing models rely on acquiring 3D structures of elusive proteins. Combining amino acid sequences with ligand sequences and better highlighting active sites are also significant challenges.Results We propose an innovative neural network model called DEAttentionDTA, based on dynamic word embeddings and a self-attention mechanism, for predicting protein-ligand binding affinity. DEAttentionDTA takes the 1D sequence information of proteins as input, including the global sequence features of amino acids, local features of the active pocket site, and linear representation information of the ligand molecule in the SMILE format. These three linear sequences are fed into a dynamic word-embedding layer based on a 1D convolutional neural network for embedding encoding and are correlated through a self-attention mechanism. The output affinity prediction values are generated using a linear layer. We compared DEAttentionDTA with various mainstream tools and achieved significantly superior results on the same dataset. We then assessed the performance of this model in the p38 protein family.Availability and implementation The resource codes are available at https://github.com/whatamazing1/DEAttentionDTA.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Protein-ligand binding affinity prediction exploiting sequence constituent homology
    Abdel-Rehim, Abbi
    Orhobor, Oghenejokpeme
    Hang, Lou
    Ni, Hao
    King, Ross D.
    BIOINFORMATICS, 2023, 39 (08)
  • [22] Neural networks prediction of the protein-ligand binding affinity with circular fingerprints
    Yin, Zuode
    Song, Wei
    Li, Baiyi
    Wang, Fengfei
    Xie, Liangxu
    Xu, Xiaojun
    TECHNOLOGY AND HEALTH CARE, 2023, 31 : S487 - S495
  • [23] Importance of Ligand Reorganization Free Energy in Protein-Ligand Binding-Affinity Prediction
    Yang, Chao-Yie
    Sun, Haiying
    Chen, Jianyong
    Nikolovska-Coleska, Zaneta
    Wang, Shaomeng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (38) : 13709 - 13721
  • [24] Effect of ligand torsion number on the AutoDock mediated prediction of protein-ligand binding affinity
    Sriramulu, Dinesh Kumar
    Wu, Sangwook
    Lee, Sun-Gu
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 83 : 359 - 365
  • [25] Pred-binding: large-scale protein-ligand binding affinity prediction
    Shar, Piar Ali
    Tao, Weiyang
    Gao, Shuo
    Huang, Chao
    Li, Bohui
    Zhang, Wenjuan
    Shahen, Mohamed
    Zheng, Chunli
    Bai, Yaofei
    Wang, Yonghua
    JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY, 2016, 31 (06) : 1443 - 1450
  • [26] Origin of high affinity protein-ligand binding
    Sharp, Kim A.
    Harpole, Kyle
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [27] Predicting protein-ligand binding affinity with gnina
    Francoeur, Paul
    Koes, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [28] Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference
    Jones, Derek
    Kim, Hyojin
    Zhang, Xiaohua
    Zemla, Adam
    Stevenson, Garrett
    Bennett, W. F. Drew
    Kirshner, Daniel
    Wong, Sergio E.
    Lightstone, Felice C.
    Allen, Jonathan E.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (04) : 1583 - 1592
  • [29] Structure-based, deep-learning models for protein-ligand binding affinity prediction
    Debby D. Wang
    Wenhui Wu
    Ran Wang
    Journal of Cheminformatics, 16
  • [30] Surface descriptors for protein-ligand affinity prediction
    Zamora, I
    Oprea, T
    Cruciani, G
    Pastor, M
    Ungell, AL
    JOURNAL OF MEDICINAL CHEMISTRY, 2003, 46 (01) : 25 - 33