COLENGTH ONE DEFORMATION RINGS

被引:0
|
作者
Le, Daniel [1 ]
Hung, Bao v. le [2 ]
Morra, Stefano [3 ]
Park, Chol [4 ]
Qian, Zicheng [5 ]
机构
[1] Purdue Univ, Dept Math, 150 N Univ St, WestLafayette, Indiana, PA 47907 USA
[2] Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
[3] Univ Paris 08, Univ Sorbonne Paris Nord, Lab Anal Geometrie & Applicat, LAGA,CNRS,UMR 7539, F-93430 Villetaneuse, France
[4] Ulsan Natl Inst Sci & Technol, Dept Math Sci, UNIST Gil 50, Ulsan 44919, South Korea
[5] Morningside Ctr Math, 55 Zhongguancun East Rd, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
LOCAL-GLOBAL COMPATIBILITY; MOD P COHOMOLOGY; WEIGHT;
D O I
10.1090/tran/9191
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K/Qp Q p be a finite unramified extension, rho : Gal(Qp/K) Q p /K ) -> GLn(Fp) n ( F p ) a continuous representation, and tau a tame inertial type of dimension n . We explicitly determine, under mild regularity conditions on tau , the potentially crystalline deformation ring R eta,tau rho in parallel Hodge-Tate weights eta = (n n - 1, , <middle dot> <middle dot> <middle dot>,1, 1 , 0) and inertial type tau when the shape of rho with respect to tau has colength at most one. This has application to the modularity of a class of shadow weights in the weight part of Serre's conjecture. Along the way we make unconditional the local -global compatibility results of Park and Qian [Me<acute accent>m. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150].
引用
收藏
页码:5749 / 5786
页数:38
相关论文
共 50 条