Quantum circuit synthesis via a random combinatorial search

被引:1
|
作者
Ashhab, Sahel [1 ]
Yoshihara, Fumiki [1 ,2 ]
Tsuji, Miwako [3 ]
Sato, Mitsuhisa [3 ]
Semba, Kouichi [1 ,4 ]
机构
[1] Natl Inst Informat & Commun Technol NICT, Adv ICT Res Inst, 4-2-1 Nukui Kitamachi, Koganei, Tokyo 1848795, Japan
[2] Tokyo Univ Sci, Dept Phys, 1-3 Kagurazaka,Shinjuku Ku, Tokyo 1628601, Japan
[3] RIKEN Ctr Computat Sci, Kobe, Hyogo 6500047, Japan
[4] Univ Tokyo, Inst Photon Sci & Technol, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
基金
日本科学技术振兴机构;
关键词
COMMUNICATION; DIFFERENTIATE; STATE;
D O I
10.1103/PhysRevA.109.052605
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We use a random search technique to find quantum gate sequences that implement perfect quantum statepreparation or unitary operator synthesis with arbitrary targets. This approach is based on the recent discoverythat there is a large multiplicity of quantum circuits that achieve unit fidelity in performing a given targetoperation, even at the minimum number of single-qubit and two-qubit gates needed to achieve unit fidelity. Weshow that the fraction of perfect-fidelity quantum circuits increases rapidly as soon as the circuit size exceedsthe minimum circuit size required for achieving unit fidelity. This result implies that near-optimal quantumcircuits for a variety of quantum information processing tasks can be identified relatively easily by trying onlya few randomly chosen quantum circuits and optimizing their parameters. In addition to analyzing the casewhere theCNOTgate is the elementary two-qubit gate, we consider the possibility of using alternative two-qubitgates. In particular, we analyze the case where the two-qubit gate is theBgate, which is known to reduce theminimum quantum circuit size for two-qubit operations. We apply the random search method to the problem ofdecomposing the four-qubit Toffoli gate and find a 15-CNOT-gate decomposition
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Reducing number of gates in quantum random walk search algorithm via modification of coin operators
    Tonchev, Hristo
    Danev, Petar
    RESULTS IN PHYSICS, 2023, 46
  • [32] Quantum random-walk search algorithm
    Shenvi, N
    Kempe, J
    Whaley, KB
    PHYSICAL REVIEW A, 2003, 67 (05)
  • [33] Quantum computational advantage via 60-qubit 24-cycle random circuit sampling
    Zhu, Qingling
    Cao, Sirui
    Chen, Fusheng
    Chen, Ming-Cheng
    Chen, Xiawei
    Chung, Tung-Hsun
    Deng, Hui
    Du, Yajie
    Fan, Daojin
    Gong, Ming
    Guo, Cheng
    Guo, Chu
    Guo, Shaojun
    Han, Lianchen
    Hong, Linyin
    Huang, He-Liang
    Huo, Yong-Heng
    Li, Liping
    Li, Na
    Li, Shaowei
    Li, Yuan
    Liang, Futian
    Lin, Chun
    Lin, Jin
    Qian, Haoran
    Qiao, Dan
    Rong, Hao
    Su, Hong
    Sun, Lihua
    Wang, Liangyuan
    Wang, Shiyu
    Wu, Dachao
    Wu, Yulin
    Xu, Yu
    Yan, Kai
    Yang, Weifeng
    Yang, Yang
    Ye, Yangsen
    Yin, Jianghan
    Ying, Chong
    Yu, Jiale
    Zha, Chen
    Zhang, Cha
    Zhang, Haibin
    Zhang, Kaili
    Zhang, Yiming
    Zhao, Han
    Zhao, Youwei
    Zhou, Liang
    Lu, Chao-Yang
    SCIENCE BULLETIN, 2022, 67 (03) : 240 - 245
  • [34] Quantum computational advantage via 60-qubit 24-cycle random circuit sampling
    Qingling Zhua
    Sirui Cao
    Fusheng Chen
    Ming-Cheng Chen
    Xiawei Chen
    Tung-Hsun Chung
    Hui Deng
    Yajie Du
    Daojin Fan
    Ming Gong
    Cheng Guo
    Chu Guo
    Shaojun Guo
    Lianchen Han
    Linyin Hong
    He-Liang Huang
    Yong-Heng Huo
    Liping Li
    Na Li
    Shaowei Li
    Yuan Li
    Futian Liang
    Chun Lin
    Jin Lin
    Haoran Qian
    Dan Qiao
    Hao Rong
    Hong Su
    Lihua Sun
    Liangyuan Wang
    Shiyu Wang
    Dachao Wu
    Yulin Wu
    Yu Xu
    Kai Yan
    Weifeng Yang
    Yang Yang
    Yangsen Ye
    Jianghan Yin
    Chong Ying
    Jiale Yu
    Chen Zha
    Cha Zhang
    Haibin Zhang
    Kaili Zhang
    Yiming Zhang
    Han Zhao
    Youwei Zhao
    Liang Zhou
    Chao-Yang Lu
    ScienceBulletin, 2022, 67 (03) : 240 - 245
  • [35] Quantum Circuit Optimization and Transpilation via Parameterized Circuit Instantiation
    Younis, Ed
    Iancu, Costin
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 465 - 475
  • [36] Hierarchical quantum circuit representations for neural architecture search
    Lourens, Matt
    Sinayskiy, Ilya
    Park, Daniel K.
    Blank, Carsten
    Petruccione, Francesco
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [37] Quantum circuit for three-qubit random states
    Giraud, Olivier
    Znidaric, Marko
    Georgeot, Bertrand
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [38] Quantum circuit design and analysis for database search applications
    Ju, Yi-Lin
    Tsai, I-Ming
    Kuo, Sy-Yen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (11) : 2552 - 2563
  • [39] Monte Carlo graph search for quantum circuit optimization
    Rosenhahn, Bodo
    Osborne, Tobias J.
    PHYSICAL REVIEW A, 2023, 108 (06)
  • [40] Combinatorial optimization via highly efficient quantum walks
    Marsh, S.
    Wang, J. B.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):