High roundness and cross-scale capillary fabrication on sapphire by femtosecond laser ablation

被引:0
|
作者
Zhang, Ziyang [1 ]
Cao, Qiang [1 ]
Deng, Hongyang [1 ]
Li, Jianlong [2 ]
Zhu, Xinzhe [2 ]
Li, Boyuan [2 ]
Liu, Feng [2 ]
Peng, Sheng [1 ]
Zou, Junjie [1 ]
Chen, Min [2 ]
机构
[1] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Laser Plasmas MOE, Shanghai 200240, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Femtosecond laser; Laser processing strategy; Sapphire capillary; Laser-wakefield accelerators; SIMULATION;
D O I
10.1016/j.optlastec.2024.111206
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a laser processing strategy for fabricating capillaries with gradually varying diameters and curvature on sapphire. By dividing the capillaries into the variable power region and the fixed power region, we have reduced the impact of energy loss caused by debris accumulation during the machining process, leading to improved roundness. We investigate the creation of morphological deviations caused by motion errors. Utilizing the varying impacts of scanning paths in reducing motion errors, we propose rules for developing laser scanning paths for different capillary structures. We have successfully fabricated capillaries with diameters ranging from 50 mu m to 800 mu m and lengths extending to centimeter-scale dimensions. The roughness measurement is below 100 nm, and roundness errors are less than 5 mu m. These capillaries with diverse configurations, including gradually varying diameters and curvature, are successfully applied to laser wakefield acceleration experiments and accelerate electrons along the curved capillary to GeV level.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [21] Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum
    Ji, Lingfei
    Li, Lin
    Devlin, Hugh
    Liu, Zhu
    Jiao, Jiao
    Whitehead, David
    LASERS IN MEDICAL SCIENCE, 2012, 27 (01) : 197 - 204
  • [22] Imaging with diffractive axicons rapidly milled on sapphire by femtosecond laser ablation
    Daniel Smith
    Soon Hock Ng
    Molong Han
    Tomas Katkus
    Vijayakumar Anand
    Karl Glazebrook
    Saulius Juodkazis
    Applied Physics B, 2021, 127
  • [23] Experimental study on 785 nm femtosecond laser ablation of sapphire in air
    Shaheen, M. E.
    Gagnon, J. E.
    Fryer, B. J.
    LASER PHYSICS LETTERS, 2015, 12 (06)
  • [24] Simulation of femtosecond laser ablation sapphire based on free electron density
    Wang, Maolu
    Mei, Wei
    Wang, Yang
    OPTICS AND LASER TECHNOLOGY, 2019, 113 : 123 - 128
  • [25] Fabrication of sealed sapphire microfluidic devices using femtosecond laser micromachining
    Elgohary, Ahmed
    Block, Erica
    Squier, Jeff
    Koneshloo, Mohammad
    Shaha, Rajib K.
    Frick, Carl
    Oakey, John
    Aryana, Saman A.
    APPLIED OPTICS, 2020, 59 (30) : 9285 - 9291
  • [26] Scribing of sapphire by dry-etching-asisted femtosecond laser fabrication
    Liu, Xue-Qing
    Chen, Qi-Dai
    Sun, Hong-Bo
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (07): : 711 - 712
  • [27] Femtosecond laser ablation of thin films for the fabrication of binary photomasks
    Venkatakrishnan, K
    Stanley, P
    Lim, LEN
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2002, 12 (06) : 775 - 779
  • [28] Influence of femtosecond laser parameters on fabrication of photomask by direct ablation
    Stanley, P
    Venkatakrishnan, K
    Lim, LEN
    Ngoi, BKA
    LASERS IN ENGINEERING, 2003, 13 (01) : 13 - 23
  • [29] Fabrication of bicomponent nanoantennas interfaces by femtosecond laser ablation method
    Chkalov, Ruslan
    Kochuev, Dmitriy
    Khorkov, Kirill
    Prokoshev, Valery
    XIII INTERNATIONAL WORKSHOP ON QUANTUM OPTICS (IWQO-2019), 2019, 220
  • [30] Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation
    Komlenok, M. S.
    Volodkin, B. O.
    Knyazev, B. A.
    Kononenko, V. V.
    Kononenko, T. V.
    Konov, V. I.
    Pavelyev, V. S.
    Soifer, V. A.
    Tukmakov, K. N.
    Choporova, Yu. Yu.
    QUANTUM ELECTRONICS, 2015, 45 (10) : 933 - 936