Orbital Kerr effect and terahertz detection via the nonlinear Hall effect

被引:2
|
作者
Ovalle, Diego Garcia [1 ]
Pezo, Armando [1 ]
Manchon, Aurelien [1 ]
机构
[1] Aix Marseille Univ, Ctr Natl Rech Sci, CINaM, Marseille, France
关键词
GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS; METALS;
D O I
10.1103/PhysRevB.110.094439
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the optical response induced by a dc current flowing in a nonmagnetic material that lacks inversion symmetry. In this class of materials, the flowing current experiences a nonlinear Hall effect and induces a nonequilibrium orbital magnetization, even in the absence of spin-orbit coupling. As a result, an orbital-driven Kerr effect arises that can be used to probe not only the orbital magnetization but also the nonlinear Hall effect. In addition, in the long wavelength limit, the nonlinear Hall effect leads to a rectified current that can be used to detect terahertz radiations. We apply the theory to selected model systems, such as WTe2 bilayer and metallic superlattices. The nonequilibrium orbital Kerr efficiencies obtained in these systems are comparable to the largest values reported experimentally in GaAs and MoS2, exceeding the values reported in metals and suggesting a large terahertz current responsivity.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Terahertz Magneto-Optics of Quantum Hall Effect and Anomalous Hall Effect
    Shimano, Ryo
    2011 36TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2011,
  • [22] Terahertz Kerr effect in gallium phosphide crystal
    Cornet, M.
    Degert, J.
    Abraham, E.
    Freysz, E.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (07) : 1648 - 1652
  • [23] Terahertz Kerr effect in Gallium Phosphide crystal
    Cornet, M.
    Degert, J.
    Abraham, E.
    Freysz, E.
    2013 38TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2013,
  • [24] Quantum Correction to the Orbital Hall Effect
    Liu, Hong
    Cullen, James H.
    Arovas, Daniel P.
    Culcer, Dimitrie
    PHYSICAL REVIEW LETTERS, 2025, 134 (03)
  • [25] Negative orbital Hall effect in germanium
    Santos, E.
    Abrao, J. E.
    Costa, J. L.
    Santos, J. G. S.
    Rodrigues-Junior, G.
    Mendes, J. B. S.
    Azevedo, A.
    PHYSICAL REVIEW APPLIED, 2024, 22 (06):
  • [26] Orbital Hall effect in mesoscopic devices
    Fonseca, Diego B.
    Pereira, Lucas L. A.
    Barbosa, Anderson L. R.
    PHYSICAL REVIEW B, 2023, 108 (24)
  • [27] Terahertz wave detection by the Stark effect in nonlinear optical polymers
    Yamada, Toshiki
    Kaji, Takahiro
    Yamada, Chiyumi
    Otomo, Akira
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (04)
  • [28] Electrical detection of ferroelectriclike metals through the nonlinear Hall effect
    Xiao, Rui-Chun
    Shao, Ding-Fu
    Huang, Wenjuan
    Jiang, Hua
    PHYSICAL REVIEW B, 2020, 102 (02)
  • [29] Ultrafast polarization modulation of laser pulses at terahertz frequencies via optical Kerr effect
    Lin Xian
    Jin Zuan-Ming
    Li Ju-Geng
    Guo Fei-Yun
    Zhuang Nai-Feng
    Chen Jian-Zhong
    Dai Ye
    Yan Xiao-Na
    Ma Guo-Hong
    ACTA PHYSICA SINICA, 2018, 67 (23)
  • [30] Orbital Hall Effect Accompanying Quantum Hall Effect: Landau Levels Cause Orbital Polarized Edge Currents
    Goebel, Boerge
    Mertig, Ingrid
    PHYSICAL REVIEW LETTERS, 2024, 133 (14)