Recent advancements in graphitic carbon nitride based direct Z- and S-scheme heterostructures for photocatalytic H2O2 production

被引:10
|
作者
Sahoo, Subrat Kumar [1 ]
Acharya, Lopamudra [1 ]
Biswal, Lijarani [1 ]
Priyadarshini, Priyanka [1 ]
Parida, Kulamani [1 ]
机构
[1] Siksha O Anusandhan Univ, Ctr Nanosci & Nanotechnol, Bhubaneswar 751030, Odisha, India
来源
INORGANIC CHEMISTRY FRONTIERS | 2024年 / 11卷 / 16期
关键词
HYDROGEN-PEROXIDE; ARTIFICIAL PHOTOSYNTHESIS; G-C3N4; NANOSHEETS; OXYGEN REDUCTION; CHARGE KINETICS; WATER; HETEROJUNCTION; PERFORMANCE; ENERGY; PHOTOLUMINESCENCE;
D O I
10.1039/d4qi00950a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Escalating global energy demands and the pressing need for sustainable and environmentally friendly energy sources have intensified research in the field of renewable energy, particularly solar energy. Hydrogen peroxide (H2O2), as a green and sustainable oxidant, is important for environmental remediation, chemical synthesis, and as a next-generation energy fuel. Solar energy harnessed in photocatalysis enables light-driven H2O2 production, offering an eco-friendly synthesis method. High-performance photocatalysts are essential for achieving viable solar H2O2 synthesis. Photocatalysis, particularly using g-C3N4, a visible-light-responsive metal-free semiconductor, presents a promising avenue for future large-scale H2O2 production. This is due to its unique properties, such as its oxygen-reduction-friendly conduction band, tuneable molecular structure, stability, cost-effectiveness, Earth abundance, facile synthesis, non-toxicity, numerous active sites, surface imperfections and high selectivity for H2O2 generation, making it a vital material in the renewable energy sector. However, challenges like rapid exciton recombination, limited light absorption capacity, suboptimal electrical conductivity, low specific surface area, and slow water oxidation kinetics need to be addressed to enhance its catalytic efficiency. Hence, the development of direct Z- or more relevant S-scheme heterostructures of g-C3N4 could promote the charge carrier separation efficiency, optimize the redox potential and improve the photocatalytic activity significantly. This review focuses on g-C3N4 as a photocatalyst, emphasizing its properties and the potential of direct Z- and S-scheme heterojunctions in photocatalytic H2O2 production. It introduces the background and surge in research on these heterojunctions, covers design principles, charge transfer mechanisms, advanced characterization methods, driving force enhancement strategies, Fermi level adjustment tactics, and principles of H2O2 production, including formation pathways, kinetics, detection, and performance evaluation. It offers insights into g-C3N4-based heterostructures' potential for application in H2O2 production and concludes with future prospects and challenges, focusing on strategies to enhance yields and suggesting new research directions.
引用
收藏
页码:4914 / 4973
页数:60
相关论文
共 50 条
  • [21] A Schottky/Z-Scheme Hybrid for Augmented Photocatalytic H2 and H2O2 Production
    Acharya, Lopamudra
    Biswal, Lijarani
    Mishra, Bhagyashree Priyadarshini
    Das, Sarmistha
    Dash, Srabani
    Parida, Kulamani
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (46)
  • [22] Recent advances in structural modification on graphitic carbon nitride (g-C3N4)-based photocatalysts for high-efficiency photocatalytic H2O2 production
    Yap F.M.
    Ling G.Z.S.
    Su B.J.
    Loh J.Y.
    Ong W.-J.
    Nano Research Energy, 2024, 3 (01):
  • [23] Synergistic effect of exfoliation and substitutional doping in graphitic carbon nitride for photocatalytic H2O2 production and H2 generation: a comparison and kinetic study
    Mishra, Bhagyashree Priyadarshini
    Acharya, Lopamudra
    Parida, Kulamani
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (05) : 1448 - 1458
  • [24] Enhanced charge carrier transport in TiO2/COF S-scheme heterojunction for efficient photocatalytic H2O2 production
    Liu, Yang
    Li, Meng
    Liu, Tao
    Wu, Zhen
    Zhang, Liuyang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 233 : 201 - 209
  • [25] Graphitic Carbon Nitride-Based Z-Scheme Structure for Photocatalytic CO2 Reduction
    Lin, Jingkai
    Tian, Wenjie
    Zhang, Huayang
    Duan, Xiaoguang
    Sun, Hongqi
    Wang, Shaobin
    ENERGY & FUELS, 2021, 35 (01) : 7 - 24
  • [26] Dual molecules engineered carbon nitride for achieving outstanding photocatalytic H2O2 production
    Wei, Wei
    Zou, Leilei
    Li, Jin
    Hou, Fengming
    Sheng, Zekai
    Li, Yihang
    Guo, Zhipeng
    Wei, Ang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 636 : 537 - 548
  • [27] Construction of spherical WO3/CdS S-scheme heterojunction for photocatalytic H2O2 production in real seawater
    Wang, Ya-Nan
    Guo, Yaxin
    Peng, Jinsong
    Zhao, Jianwei
    Yang, Lei
    Song, Haiyan
    Chen, Chunxia
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (01):
  • [28] Central nitrogen vacancies in polymeric carbon nitride for boosted photocatalytic H2O2 production
    Lin, Feng
    Wang, Tong
    Ren, Zhujuan
    Cai, Xiaorong
    Wang, Yulin
    Chen, Jun
    Wang, Jianghao
    Zang, Shaohong
    Mao, Feifei
    Lv, Liang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 636 : 223 - 229
  • [29] Enhanced Photocatalytic H2O2 Production over Carbon Nitride by Doping and Defect Engineering
    Wu, Shuai
    Yu, Hongtao
    Chen, Shuo
    Quan, Xie
    ACS CATALYSIS, 2020, 10 (24): : 14380 - 14389
  • [30] Spatial Specific Janus S-Scheme Photocatalyst with Enhanced H2O2 Production Performance
    Xia, Chunhong
    Yuan, Ling
    Song, Hao
    Zhang, Chaoqi
    Li, Zimeng
    Zou, Yingying
    Li, Jiaxin
    Bao, Tong
    Yu, Chengzhong
    Liu, Chao
    SMALL, 2023, 19 (29)