EEG-Based Emotion Recognition in Neuromarketing Using Fuzzy Linguistic Summarization

被引:1
|
作者
Kaya, Umran [1 ]
Akay, Diyar [2 ]
Ayan, Sevgi Sengul [1 ]
机构
[1] Antalya Bilim Univ, Dept Ind Engn, TR-07190 Antalya, Turkiye
[2] Hacettepe Univ, Dept Ind Engn, TR-06230 Ankara, Turkiye
关键词
Electroencephalography; Neuromarketing; Brain modeling; Emotion recognition; Linguistics; Fuzzy logic; Data models; Electroencephalography (EEG); emotion recognition; fuzzy linguistic summarization (FLS); multigranular trend detection; neuromarketing; TIME-SERIES; BRAIN RESPONSES; MUSIC; PREFERENCE; CLASSIFICATION; PREDICTION;
D O I
10.1109/TFUZZ.2024.3392495
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, to increase market share, companies have preferred neuromarketing over traditional methods for better analysis of consumer behavior. Since it easily detects customers' subconscious preferences, electroencephalography (EEG), a brain imaging method, has become widespread within neuromarketing techniques. To make sense of EEG signals, dimensional models are used to convert them into emotions. These steps can reveal emotions and preferences easily but still require an expert for detailed stimulus analysis. This article proposed a fuzzy linguistic summarization approach to provide a decision support tool aimed at presenting detailed analysis to neuromarketing experts. EEG signals were recorded to analyze a hotel's three (audio, video, web page) advertisements (ads). These were converted into fuzzy emotion labels in a modified Russell's circumplex model for more specific analysis. Then, these emotion labels were used in linguistic summarization. EEG data were handled in three types: univariate, multivariate, and multigranular detected time series. Each ad was summarized according to demographic features, such as gender and age, allowing comparisons between ads and their segments. The granular trend detection algorithm was modified to detect the simultaneous effects of ads. This study will inspire future studies with three innovations: fuzzy linguistic summarization technique in neuromarketing, fuzzy emotion recognition, and a modified multigranular trend detection algorithm that detects simultaneous agglomeration that is often overlooked.
引用
收藏
页码:4248 / 4259
页数:12
相关论文
共 50 条
  • [41] EEG-Based Emotion Recognition with Similarity Learning Network
    Wang, Yixin
    Qiu, Shuang
    Li, Jinpeng
    Ma, Xuelin
    Liang, Zhiyue
    Li, Hui
    He, Huiguang
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 1209 - 1212
  • [42] Feature Transfer Learning in EEG-based Emotion Recognition
    Xue, Bing
    Lv, Zhao
    Xue, Jingyi
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 3608 - 3611
  • [43] CROSS-CORPUS EEG-BASED EMOTION RECOGNITION
    Rayatdoost, Soheil
    Soleymani, Mohammad
    2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,
  • [44] A survey on EEG-based neurophysiological research for emotion recognition
    Jenamani Chandrakanta Badajena
    Srinivas Sethi
    Sanjit Kumar Dash
    Ramesh Kumar Sahoo
    CCF Transactions on Pervasive Computing and Interaction, 2023, 5 : 333 - 349
  • [45] EEG-based Emotion Recognition with Feature Fusion Networks
    Qiang Gao
    Yi Yang
    Qiaoju Kang
    Zekun Tian
    Yu Song
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 421 - 429
  • [46] Research Progress of EEG-Based Emotion Recognition: A Survey
    Wang, Yiming
    Zhang, Bin
    Di, Lamei
    ACM COMPUTING SURVEYS, 2024, 56 (11)
  • [47] EEG-Based Emotion Recognition with Consideration of Individual Difference
    Xia, Yuxiao
    Liu, Yinhua
    SENSORS, 2023, 23 (18)
  • [48] Unsupervised Feature Learning for EEG-based Emotion Recognition
    Lan, Zirui
    Sourina, Olga
    Wang, Lipo
    Scherer, Reinhold
    Mueller-Putz, Gernot
    2017 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2017, : 182 - 185
  • [49] WeDea: A New EEG-Based Framework for Emotion Recognition
    Kim, Sun-Hee
    Yang, Hyung-Jeong
    Ngoc Anh Thi Nguyen
    Prabhakar, Sunil Kumar
    Lee, Seong-Whan
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (01) : 264 - 275
  • [50] EEG-based emotion recognition utilizing wavelet coefficients
    Ali Momennezhad
    Multimedia Tools and Applications, 2018, 77 : 27089 - 27106