OKRidge: Scalable Optimal k-Sparse Ridge Regression

被引:0
|
作者
Liu, Jiachang [1 ]
Rosen, Sam [1 ]
Zhong, Chudi [1 ]
Rudin, Cynthia [1 ]
机构
[1] Duke Univ, Durham, NC 27706 USA
关键词
SUBSET-SELECTION; SIGNAL RECOVERY; ALGORITHMS; PROGRAMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider an important problem in scientific discovery, namely identifying sparse governing equations for nonlinear dynamical systems. This involves solving sparse ridge regression problems to provable optimality in order to determine which terms drive the underlying dynamics. We propose a fast algorithm, OKRidge, for sparse ridge regression, using a novel lower bound calculation involving, first, a saddle point formulation, and from there, either solving (i) a linear system or (ii) using an ADMM-based approach, where the proximal operators can be efficiently evaluated by solving another linear system and an isotonic regression problem. We also propose a method to warm-start our solver, which leverages a beam search. Experimentally, our methods attain provable optimality with run times that are orders of magnitude faster than those of the existing MIP formulations solved by the commercial solver Gurobi.
引用
收藏
页数:183
相关论文
共 50 条
  • [21] Optimal Deterministic Coresets for Ridge Regression
    Kacham, Praneeth
    Woodruff, David P.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 4141 - 4149
  • [22] Scalable and Memory-Efficient Kernel Ridge Regression
    Chavez, Gustavo
    Liu, Yang
    Ghysels, Pieter
    Li, Xiaoye Sherry
    Rebrova, Elizaveta
    2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM IPDPS 2020, 2020, : 956 - 965
  • [23] k-Sparse Autoencoder-Based Automatic Modulation Classification With Low Complexity
    Afan Ali
    Fan Yangyu
    IEEE COMMUNICATIONS LETTERS, 2017, 21 (10) : 2162 - 2165
  • [24] Solving Soft Clustering Ensemble via k-Sparse Discrete Wasserstein Barycenter
    Qin, Ruizhe
    Li, Mengying
    Ding, Hu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [25] Sparse kernel ridge regression using backward deletion
    Wang, Ling
    Bo, Liefeng
    Jiao, Licheng
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 365 - 374
  • [26] Sparse alternatives to ridge regression: a random effects approach
    Gusnanto, Arief
    Pawitan, Yudi
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (01) : 12 - 26
  • [27] Sparse smooth ridge regression method for supervised learning
    Ren, Weiya
    Li, Guohui
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2015, 37 (06): : 121 - 128
  • [28] Rejoinder: Sparse Regression: Scalable Algorithms and Empirical Performance
    Bertsimas, Dimitris
    Pauphilet, Jean
    Van Parys, Bart
    STATISTICAL SCIENCE, 2020, 35 (04) : 623 - 624
  • [29] Group k-Sparse Temporal Convolutional Neural Networks: Unsupervised Pretraining for Video Classification
    Milacski, Zoltan A.
    Poczos, Barnabas
    Lorincz, Andras
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [30] The k-sparse LSR for subspace clustering via 0-1 integer programming
    Yang, Ting
    Zhou, Shuisheng
    Zhang, Zhuan
    SIGNAL PROCESSING, 2022, 199