Constacyclic codes over Z2 [u]/⟨u2⟩ x Z2 [u]/⟨u3⟩ and the MacWilliams identities

被引:0
|
作者
Sagar, Vidya [1 ]
Yadav, Ankit [1 ]
Sarma, Ritumoni [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, Delhi, India
关键词
Constacyclic code; Gray map; Quasi-cyclic code; Weight enumerator; MacWilliams identities; LINEAR CODES; CYCLIC CODES; EUCLIDEAN WEIGHTS; RINGS; LEE;
D O I
10.1007/s00200-024-00662-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we deal with additive codes over the Frobenius ring R2R3 := Z(2)[u]/< u(2)> x Z(2)[u]/< u(3)>. First, we study constacyclic codes over R-2 and R-3 and find their generator polynomials. With the help of these generator polynomials, we determine the structure of constacyclic codes over R2R3. We use Gray maps to show that constacyclic codes over R2R3 are essentially binary generalized quasi-cyclic codes. Moreover, we obtain a number of binary codes with good parameters from these R2R3-constacyclic codes. Besides, several weight enumerators are computed, and the corresponding MacWilliams identities are established.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Z2[u]Z2[u]-Additive codes
    Shashirekha, G.
    Bhatta, G. R. Vadiraja
    Poojary, Prasanna
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [2] The Structure of Z2[u]Z2[u, v]-additive Codes
    Annamalai, N.
    Durairajan, C.
    [J]. 2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 1351 - 1356
  • [3] Cyclic and constacyclic codes over the ring Z4[u]/⟨u3 - u2⟩ and their Gray images
    Ozen, Mehmet
    Uzekmek, Fatma Zehra
    Oztas, Elif Segah
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 579 - 596
  • [4] (1+λu2)-constacyclic codes of arbitrary length over Fpm[u]/u3
    Ding, Jian
    Li, Hong-ju
    Liang, Jing
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 59 (1-2) : 343 - 359
  • [5] On Z2Z2[u]Z2[u, v]-additive cyclic codes and their application in obtaining optimal codes
    Ashraf, Mohammad
    Asim, Mohd
    Mohammad, Ghulam
    Rehman, Washiqur
    Khan, Naim
    [J]. FILOMAT, 2024, 38 (08) : 2899 - 2914
  • [6] A study of constacyclic codes over the ring Z(4)[u]/< u(2) - 3 >
    Bag, Tushar
    Islam, Habibul
    Prakash, Om
    Upadhyay, Ashish K.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (04)
  • [7] A class of constacyclic codes over Fpm [u]/⟨u2⟩
    Rani, Saroj
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02): : 355 - 371
  • [8] Cyclic codes over the rings Z2 + uZ2 and Z2 + uZ2 + u2Z2
    Taher Abualrub
    Irfan Siap
    [J]. Designs, Codes and Cryptography, 2007, 42 : 273 - 287
  • [9] Z2Z2[u]-Cyclic and Constacyclic Codes
    Aydogdu, Ismail
    Abualrub, Taher
    Siap, Irfan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (08) : 4883 - 4893
  • [10] Some Constacyclic Codes over Z4[u]/⟨u2⟩, New Gray Maps, and New Quaternary Codes
    Cengellenmis, Yasemin
    Dertli, Abdullah
    Aydin, Nuh
    [J]. ALGEBRA COLLOQUIUM, 2018, 25 (03) : 369 - 376