Mean-field derivation of Landau-like equations

被引:0
|
作者
Carrillo, Jose Antonio [1 ]
Guo, Shuchen [1 ]
Jabin, Pierre-Emmanuel [2 ]
机构
[1] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
[2] Penn State Univ, Dept Math, State Coll, PA 16802 USA
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Space homogeneous Landau equation; Interacting particle systems; Mean-field limit; Relative entropy; HARD POTENTIALS; WELL-POSEDNESS; PROPAGATION; CHAOS; SYSTEMS; LIMIT; KAC;
D O I
10.1016/j.aml.2024.109195
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a class of space homogeneous Landau-like equations from stochastic interacting particles. Through the use of relative entropy, we obtain quantitative bounds on the distance between the solution of the N-particle Liouville equation and the tensorised solution of the limiting Landau-like equation.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Path integrals for mean-field equations in nonlinear dynamos
    Sokoloff, Dmitry
    Yokoi, Nobumitsu
    JOURNAL OF PLASMA PHYSICS, 2018, 84 (03)
  • [42] SOME PREDICTIONS FROM MEAN-FIELD THERMOSOLUTAL EQUATIONS
    RIAHI, N
    JOURNAL OF FLUID MECHANICS, 1978, 87 (AUG) : 737 - 748
  • [43] MEAN-FIELD REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
    Djehiche, Boualem
    Elie, Romuald
    Hamadene, Said
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (04): : 2493 - 2518
  • [44] MEAN-FIELD AND KINETIC DESCRIPTIONS OF NEURAL DIFFERENTIAL EQUATIONS
    Herty, Michael
    Trimborn, Torsten
    Visconti, Giuseppe
    FOUNDATIONS OF DATA SCIENCE, 2022, 4 (02): : 271 - 298
  • [45] Semiclassical analysis of extended dynamical mean-field equations
    Pankov, S
    Kotliar, G
    Motome, Y
    PHYSICAL REVIEW B, 2002, 66 (04): : 451171 - 4511713
  • [46] Approximation of solutions of mean-field stochastic differential equations
    Elbarrimi, Oussama
    Ouknine, Youssef
    STOCHASTICS AND DYNAMICS, 2021, 21 (01)
  • [47] Harnack inequality for mean-field stochastic differential equations
    Zong, Gaofeng
    Chen, Zengjing
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (05) : 1424 - 1432
  • [48] Mean-Field Limits Beyond Ordinary Differential Equations
    Bortolussi, Luca
    Gast, Nicolas
    FORMAL METHODS FOR THE QUANTITATIVE EVALUATION OF COLLECTIVE ADAPTIVE SYSTEMS, SFM 2016, 2016, 9700 : 61 - 82
  • [49] Mean-field reflected backward stochastic differential equations
    Li, Zhi
    Luo, Jiaowan
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (11) : 1961 - 1968
  • [50] The Poisson structure of the mean-field equations in the φ4 theory
    Martin, C
    ANNALS OF PHYSICS, 1999, 271 (02) : 294 - 305