Co-insertion of K+ and Ca2+ in vanadium oxide as high-performance aqueous zinc-ion battery cathode material

被引:2
|
作者
Li, Zhaoao [1 ,2 ]
Yang, Linyu [1 ,2 ]
Wang, Shuying [1 ,2 ]
Zhu, Kunjie [3 ]
Li, Haibing [4 ]
机构
[1] Xinjiang Univ, Xinjiang Key Lab Solid State Phys & Devices, Urumqi 830046, Peoples R China
[2] Xin Jiang Univ, Sch Phys & technol, Urumqi 830046, Xinjiang, Peoples R China
[3] Univ Shanghai Sci & Technol, China Inst Energy Mat Sci, Shanghai 200093, Peoples R China
[4] China Jiliang Univ, Coll Modern Sci & Technol, Jinhua 322000, Peoples R China
基金
中国国家自然科学基金;
关键词
K0.02Ca0.18V2O5 center dot 0.7H(2)O; Zinc ion battery; Co-inserting; HIGH-ENERGY; INTERCALATION; V2O5;
D O I
10.1016/j.jallcom.2024.174589
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Inserting metal ions into vanadium oxides can effectively improve their electrochemical properties, and the insertion of different single metal ions into vanadium-based compounds can enhance their electrochemical performance in different ways. Moreover, the insertion of multiple metal ions into vanadium-based compounds may provide a synergistic effect. Therefore, in this work a K0.02Ca0.18V2O5 center dot 0.7H(2)O (KCaVOH) cathode material was obtained by co-inserting the monovalent metal ion K+ and the divalent metal ion Ca2+ into vanadium oxide through a one-step hydrothermal method. The insertion of K+ enhances the structural stability of the cathode material, while the insertion of Ca2+ increases the layer spacing between the V-O layers and improves the specific capacity of the cathode material. The co-insertion of K+ and Ca2+ effectively enhances the electrochemical performance of V2O5 center dot 1.6H(2)O, and the KCaVOH cathode provides a high specific capacity of 410 mAh center dot g(-1) at 0.3 A center dot g(-1). Moreover, the capacity still reaches 265 mAh center dot g(-1) after 1800 cycles at 5 A center dot g(-1). This method provides a strategy for significantly enhancing the electrochemical performance of vanadium-based cathode materials.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [31] Preparation and Performance of High Stability Cathode Material MnO2@MgO for Aqueous Zinc-Ion Battery
    Wang Zhi-Chao
    Shang Hong-Jing
    Guo Guang-Zhi
    Tang Jie
    Li Song
    Wang Xin-Yu
    Sun Jun-Cai
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2020, 36 (05) : 857 - 863
  • [32] Co doped V2O5 hollow microsphere as high-performance cathode for aqueous zinc-ion battery
    Li, Qijian
    Yu, Ningning
    Li, Linwen
    Sun, Bo
    Chen, Xiaowen
    Wei, Fuxiang
    Wang, Qingliang
    Sui, Yanwei
    He, Jie
    Zhang, ZunYang
    Journal of Power Sources, 2025, 628
  • [33] Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode
    Tang, Boya
    Zhou, Jiang
    Fang, Guozhao
    Liu, Fei
    Zhu, Chuyu
    Wang, Chao
    Pan, Anqiang
    Liang, Shuquan
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (03) : 940 - 945
  • [34] Bimetallic Intercalated Vanadium Oxide As a High-Performance Cathode for Aqueous Zinc Ion Batteries
    Bai, Shuai
    Wang, Xi
    Wang, Qiming
    Chen, Zhuo
    Zhang, Yining
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (17) : 22403 - 22410
  • [35] Bimetallic Intercalated Vanadium Oxide As a High-Performance Cathode for Aqueous Zinc Ion Batteries
    Bai S.
    Wang X.
    Wang Q.
    Chen Z.
    Zhang Y.
    ACS Applied Materials and Interfaces, 2024, 16 (17): : 22403 - 22410
  • [36] Zn-doped manganese tetroxide/graphene oxide cathode materials for high-performance aqueous zinc-ion battery
    Ge, Linheng
    Zhang, Hong
    Wang, Zirui
    Gao, Qingli
    Ren, Manman
    Cai, Xiaoxia
    Liu, Qinze
    Liu, Weiliang
    Yao, Jinshui
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2024, 112 (01) : 15 - 24
  • [37] Electroactivation-induced spinel ZnV2O4 as a high-performance cathode material for aqueous zinc-ion battery
    Liu, Yi
    Li, Chang
    Xu, Jia
    Ou, Mingyang
    Fang, Chun
    Sun, Shixiong
    Qiu, Yuegang
    Peng, Jian
    Lu, Gongchang
    Li, Qing
    Han, Jiantao
    Huang, Yunhui
    NANO ENERGY, 2020, 67
  • [38] Ultrastable hydrated vanadium dioxide cathodes for high-performance aqueous zinc ion batteries with H+/Zn2+ Co-insertion mechanism
    Chen, Xiudong
    Hu, Xiesen
    Chen, Yaoyao
    Cao, Xiaohua
    Huang, Yan
    Zhang, Hang
    Liu, Jin-Hang
    Wang, Yawei
    Chou, Shu-Lei
    Cao, Dapeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (41) : 22194 - 22204
  • [39] Metal ions and organic molecule co-intercalated vanadium oxide cathode for high-performance zinc-ion batteries
    Hu, Liang
    Sun, Qinghe
    Cai, Hongkun
    Ni, Jian
    Zhang, Jianjun
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 177
  • [40] Structural Modification of V2O5 as High-Performance Aqueous Zinc-Ion Battery Cathode
    Tang, Boya
    Zhou, Jiang
    Fang, Guozhao
    Guo, Shan
    Guo, Xun
    Shan, Lutong
    Tang, Yan
    Liang, Shuquan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) : A480 - A486