THE q-ANALOG OF THE RODRIGUES FORMULA FOR SYMMETRIC q-DUNKL-CLASSICAL ORTHOGONAL q-POLYNOMIALS

被引:0
|
作者
Souissi, Jihad [1 ]
机构
[1] Univ Gabes, Fac Sci Gabes, Dept Math, St Erriadh, Gabes 6072, Tunisia
来源
关键词
Orthogonal polynomials; symmetric forms; q-Dunkl operator; classical polynomials;
D O I
10.31392/MFAT-npu26_1-2.2023.06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to establish a Rodrigues type formula for q-Dunkl-classical symmetric orthogonal q-polynomials.
引用
下载
收藏
页码:73 / 80
页数:8
相关论文
共 50 条
  • [11] A Q-ANALOG OF THE EXPONENTIAL FORMULA
    GESSEL, IM
    DISCRETE MATHEMATICS, 1982, 40 (01) : 69 - 80
  • [12] Diverse characterizations of Q-Dunkl classical orthogonal polynomials
    Souissi, Jihad
    Hamdi, Sabrine
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2024, 30 (09) : 1253 - 1284
  • [13] An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
    Ghressi, Abdallah
    Kheriji, Lotfi
    Tounsi, Mohamed Ihsen
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [14] SOME GENERALIZED SYMMETRIC Q-POLYNOMIALS
    REID, LJ
    MATHEMATISCHE NACHRICHTEN, 1971, 49 (1-6) : 149 - &
  • [15] On a q-analog of some numbers and polynomials
    Serkan Araci
    Erkan Ağyüz
    Mehmet Acikgoz
    Journal of Inequalities and Applications, 2015
  • [16] On a structure formula for classical q-orthogonal polynomials
    Koepf, W
    Schmersau, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 136 (1-2) : 99 - 107
  • [17] On a q-analog of some numbers and polynomials
    Araci, Serkan
    Agyuz, Erkan
    Acikgoz, Mehmet
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [18] Rodrigues formula and recurrence coefficients for non-symmetric Dunkl-classical orthogonal polynomials
    B. Bouras
    Y. Habbachi
    F. Marcellán
    The Ramanujan Journal, 2021, 56 : 451 - 466
  • [19] Rodrigues formula and recurrence coefficients for non-symmetric Dunkl-classical orthogonal polynomials
    Bouras, B.
    Habbachi, Y.
    Marcellan, F.
    RAMANUJAN JOURNAL, 2021, 56 (02): : 451 - 466
  • [20] On a q-analog of the Wallach–Okounkov Formula
    O. Bershtein
    YE. Kolisnyk
    L. Vaksman
    Letters in Mathematical Physics, 2006, 78 : 97 - 109