MPINet: Multiscale Physics-Informed Network for Bearing Fault Diagnosis With Small Samples

被引:0
|
作者
Gao, Chao [1 ]
Wang, Zikai [2 ]
Guo, Yongjin [1 ]
Wang, Hongdong [1 ]
Yi, Hong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Ocean & Civil Engn, MOE Key Lab Marine Intelligent Equipment & Syst, Shanghai 200240, Peoples R China
[2] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Fault diagnosis; Training; Convolution; Vibrations; Kernel; Convolutional neural networks; Bearing fault diagnosis; multiscale; physics-informed; small-sample learning; CONVOLUTIONAL NEURAL-NETWORK; ELEMENT BEARINGS;
D O I
10.1109/TII.2024.3452174
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning is increasingly prevalent in the bearing fault diagnosis, while the deficiency of fault samples could diminish the diagnostic efficacy of data-driven models that depend on extensive training data. For that, a novel multiscale physics-informed network (MPINet) is proposed for bearing fault diagnosis with small samples. Our fundamental idea is incorporating physical knowledge into the training process for enabling the model could better learn the fault features. To pursue this goal, a physics-informed block (PIB) is developed to extract fault features, which is customized for each failure mode. By this process, multiple independently trained PIBs encode the physical knowledge of their corresponding failure mode into the model, and thus yield multiscale fault features. Finally, the diagnosis result is obtained by using a new classifier head to merge these multiscale features. Extensive experimental results show that our MPINet can obtain superior diagnosis performance with small samples.
引用
收藏
页码:14371 / 14380
页数:10
相关论文
共 50 条
  • [41] Physics-informed deep learning of rate-and-state fault friction
    Rucker, Cody
    Erickson, Brittany A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 430
  • [42] Application of Multiscale Learning Neural Network Based on CNN in Bearing Fault Diagnosis
    Daichao Wang
    Qingwen Guo
    Yan Song
    Shengyao Gao
    Yibin Li
    Journal of Signal Processing Systems, 2019, 91 : 1205 - 1217
  • [43] Enhanced Lightweight Multiscale Convolutional Neural Network for Rolling Bearing Fault Diagnosis
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Zhu, Jing
    Liu, Yang
    Cheng, Qiang
    IEEE ACCESS, 2020, 8 (08): : 217723 - 217734
  • [44] A Multiscale Graph Convolutional Neural Network Framework for Fault Diagnosis of Rolling Bearing
    Yin, Peizhe
    Nie, Jie
    Liang, Xinyue
    Yu, Shusong
    Wang, Chenglong
    Nie, Weizhi
    Ding, Xiangqian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [45] Multiscale convolutional neural network and decision fusion for rolling bearing fault diagnosis
    Lv, Defeng
    Wang, Huawei
    Che, Changchang
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2021, 73 (03) : 516 - 522
  • [46] Application of Multiscale Learning Neural Network Based on CNN in Bearing Fault Diagnosis
    Wang, Daichao
    Guo, Qingwen
    Song, Yan
    Gao, Shengyao
    Li, Yibin
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2019, 91 (10): : 1205 - 1217
  • [47] PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE HEAT CONDUCTION PROBLEM
    Qian, Weijia
    Hui, Xin
    Wang, Bosen
    Zhang, Zongwei
    Lin, Yuzhen
    Yang, Siheng
    HEAT TRANSFER RESEARCH, 2023, 54 (04) : 65 - 76
  • [48] Physics-Informed Neural Network for Nonlinear Dynamics in Fiber Optics
    Jiang, Xiaotian
    Wang, Danshi
    Fan, Qirui
    Zhang, Min
    Lu, Chao
    Lau, Alan Pak Tao
    LASER & PHOTONICS REVIEWS, 2022, 16 (09)
  • [49] Predicting ocean pressure field with a physics-informed neural network
    Yoon, Seunghyun
    Park, Yongsung
    Gerstoft, Peter
    Seong, Woojae
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (03): : 2037 - 2049
  • [50] Probabilistic physics-informed neural network for seismic petrophysical inversion
    Li, Peng
    Liu, Mingliang
    Alfarraj, Motaz
    Tahmasebi, Pejman
    Grana, Dario
    GEOPHYSICS, 2024, 89 (02) : M17 - M32