EdgeFM: Leveraging Foundation Model for Open-set Learning on the Edge

被引:3
|
作者
Yang, Bufang [1 ]
He, Lixing [1 ]
Ling, Neiwen [1 ]
Yan, Zhenyu [1 ]
Xing, Guoliang [1 ]
Shuai, Xian [2 ]
Ren, Xiaozhe [2 ]
Jiang, Xin [2 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Huawei Technol, Noahs Ark Lab, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Foundation Models; Edge Computing; Offloading; Edge-cloud Collaborative System; Open-set Recognition; Internet of Things;
D O I
10.1145/3625687.3625793
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep Learning (DL) models have been widely deployed on IoT devices with the help of advancements in DL algorithms and chips. However, the limited resources of edge devices make these ondevice DL models hard to be generalizable to diverse environments and tasks. Although the recently emerged foundation models (FMs) show impressive generalization power, how to effectively leverage the rich knowledge of FMs on resource-limited edge devices is still not explored. In this paper, we propose EdgeFM, a novel edge-cloud cooperative system with open-set recognition capability. EdgeFM selectively uploads unlabeled data to query the FM on the cloud and customizes the specific knowledge and architectures for edge models. Meanwhile, EdgeFM conducts dynamic model switching at run-time taking into account both data uncertainty and dynamic network variations, which ensures the accuracy always close to the original FM. We implement EdgeFM using two FMs on two edge platforms. We evaluate EdgeFM on three public datasets and two self-collected datasets. Results show that EdgeFM can reduce the end-to-end latency up to 3.2x and achieve 34.3% accuracy increase compared with the baseline.
引用
收藏
页码:111 / 124
页数:14
相关论文
共 50 条
  • [31] EvidentialMix: Learning with Combined Open-set and Closed-set Noisy Labels
    Sachdeva, Ragav
    Cordeiro, Filipe R.
    Belagiannis, Vasileios
    Reid, Ian
    Carneiro, Gustavo
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3606 - 3614
  • [32] Extended T: Learning With Mixed Closed-Set and Open-Set Labels
    Xia, Xiaobo
    Han, Bo
    Wang, Nannan
    Deng, Jiankang
    Li, Jiatong
    Mao, Yinian
    Liu, Tongliang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3047 - 3058
  • [33] Orientational Clustering Learning for Open-Set Hyperspectral Image Classification
    Xu, Hao
    Chen, Wenjing
    Tan, Cheng
    Ning, Hailong
    Sun, Hao
    Xie, Wei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [34] Learning cost function for graph classification with open-set methods
    Werneck, Rafael de Oliveira
    Raveaux, Romain
    Tabbone, Salvatore
    Torres, Ricardo da Silva
    PATTERN RECOGNITION LETTERS, 2019, 128 : 8 - 15
  • [35] Supervised Contrastive Learning for Open-Set Hyperspectral Image Classification
    Li, Zhaokui
    Bi, Ke
    Wang, Yan
    Fang, Zhuoqun
    Zhang, Jinen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [36] Open-set marine object instance segmentation with prototype learning
    Hu, Xing
    Li, Panlong
    Karimi, Hamid Reza
    Jiang, Linhua
    Zhang, Dawei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6055 - 6062
  • [37] Open-Set Domain Adaptation Classification Via Adversarial Learning
    Zhao, Yunbin
    Zhu, Songhao
    Liang, Zhiwei
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7059 - 7063
  • [38] Learning to Generate the Unknowns as a Remedy to the Open-Set Domain Shift
    Baktashmotlagh, Mahsa
    Chen, Tianle
    Salzmann, Mathieu
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 3737 - 3746
  • [39] Learning Generalized Representations for Open-Set Temporal Action Localization
    Hu, Junshan
    Zhuang, Liansheng
    Dong, Weisong
    Ge, Shiming
    Wang, Shafei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1987 - 1996
  • [40] Open-Set Likelihood Maximization for Few-Shot Learning
    Boudiaf, Malik
    Bennequin, Etienne
    Tami, Myriam
    Toubhans, Antoine
    Piantanida, Pablo
    Hudelot, Celine
    Ben Ayed, Ismail
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24007 - 24016