Computational design of non-porous pH-responsive antibody nanoparticles

被引:8
|
作者
Yang, Erin C. [1 ,2 ,3 ]
Divine, Robby [1 ,2 ,4 ,5 ]
Miranda, Marcos C. [1 ,6 ,7 ]
Borst, Andrew J. [1 ,2 ]
Sheffler, Will [1 ]
Zhang, Jason Z. [1 ,2 ]
Decarreau, Justin [1 ,2 ]
Saragovi, Amijai [1 ,2 ]
Abedi, Mohamad [1 ,2 ]
Goldbach, Nicolas [1 ,8 ]
Ahlrichs, Maggie [1 ,2 ]
Dobbins, Craig [1 ,2 ]
Hand, Alexis [1 ,2 ]
Cheng, Suna [1 ,2 ]
Lamb, Mila [1 ,2 ]
Levine, Paul M. [1 ,2 ]
Chan, Sidney [1 ,2 ]
Skotheim, Rebecca [1 ,2 ]
Fallas, Jorge [1 ,2 ]
Ueda, George [1 ,2 ]
Lubner, Joshua [1 ,2 ]
Somiya, Masaharu [1 ,9 ]
Khmelinskaia, Alena [1 ,10 ,11 ]
King, Neil P. [1 ,2 ]
Baker, David [1 ,2 ,12 ]
机构
[1] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA
[2] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[3] Univ Washington, Grad Program Biol Phys Struct & Design, Seattle, WA USA
[4] Univ Washington, Grad Program Biochem, Seattle, WA USA
[5] Univ Calif Davis, Dept Chem, Davis, CA USA
[6] Karolinska Inst, Dept Med Solna, Div Immunol & Allergy, Stockholm, Sweden
[7] Karolinska Univ Hosp, Stockholm, Sweden
[8] Tech Univ Munich, Munich, Germany
[9] Osaka Univ, SANKEN, Osaka, Japan
[10] Univ Bonn, Transdisciplinary Res Area Bldg Blocks Matter & F, Bonn, Germany
[11] Univ Bonn, Life & Med Sci Inst, Bonn, Germany
[12] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
ACCURATE DESIGN; PROTEIN CAGES; VECTOR; EVOLUTION; FERRITIN; SYMMETRY; PLATFORM;
D O I
10.1038/s41594-024-01288-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Programming protein nanomaterials to respond to changes in environmental conditions is a current challenge for protein design and is important for targeted delivery of biologics. Here we describe the design of octahedral non-porous nanoparticles with a targeting antibody on the two-fold symmetry axis, a designed trimer programmed to disassemble below a tunable pH transition point on the three-fold axis, and a designed tetramer on the four-fold symmetry axis. Designed non-covalent interfaces guide cooperative nanoparticle assembly from independently purified components, and a cryo-EM density map closely matches the computational design model. The designed nanoparticles can package protein and nucleic acid payloads, are endocytosed following antibody-mediated targeting of cell surface receptors, and undergo tunable pH-dependent disassembly at pH values ranging between 5.9 and 6.7. The ability to incorporate almost any antibody into a non-porous pH-dependent nanoparticle opens up new routes to antibody-directed targeted delivery. Designed novel protein nanoparticle technology integrates antibody targeting and responds to changes in environmental conditions to release protected molecular cargoes, opening new applications for precision medicine.
引用
收藏
页码:1404 / 1412
页数:30
相关论文
共 50 条
  • [31] pH-Responsive Nanoparticles for Controllable Curcumin Delivery: The Design of Polycation Core with Different Structures
    Feng, Hailiang
    Wang, Changrong
    Zhou, Junhui
    Liu, Jinjian
    Zhang, Jianhua
    Guo, Ruiwei
    Liu, Jianfeng
    Dong, Anjie
    Deng, Liandong
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2018, 219 (14)
  • [32] Molecular design of coordination bonding architecture in mesoporous nanoparticles for rational pH-responsive delivery
    Zheng, Haoquan
    Che, Shunai
    MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 168 : 73 - 80
  • [33] Computational study of pH-responsive di-lanthanide complexes
    O'Brien, Joseph Senan
    Allen, Matthew J.
    Cisneros, Gerardo Andres
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2017, 117 (17)
  • [34] Assembly of pH-Responsive Antibody-Drug-Inspired Conjugates
    Raabe, Marco
    Heck, Astrid Johanna
    Fuehrer, Siska
    Schauenburg, Dominik
    Pieszka, Michaela
    Wang, Tao
    Zegota, Maksymilian Marek
    Nuhn, Lutz
    Ng, David Y. W.
    Kuan, Seah Ling
    Weil, Tanja
    MACROMOLECULAR BIOSCIENCE, 2022, 22 (02)
  • [35] pH-responsive zwitterionic carbon dots for detection of rituximab antibody
    Emami, Elham
    Mousazadeh, Mohammad H.
    LUMINESCENCE, 2021, 36 (05) : 1198 - 1208
  • [36] A computational study of non-porous and porous liners in explosively-formed jets
    Mayseless, M
    Harvey, WB
    Hetz, A
    SHOCK COMPRESSION OF CONDENSED MATTER-1999, PTS 1 AND 2, 2000, 505 : 367 - 370
  • [37] Synthesis and application of pH-responsive branched copolymer nanoparticles (PRBNs): a comparison with pH-responsive shell cross-linked micelles
    Weaver, Jonathan V. M.
    Adams, Dave J.
    SOFT MATTER, 2010, 6 (12) : 2575 - 2582
  • [38] Design of pH-Responsive Nanomaterials Based on the Tumor Microenvironment
    Liu, Yunheng
    Si, Longqing
    Jiang, Yuxuan
    Jiang, Shaojing
    Zhang, Xiaokang
    Li, Song
    Chen, Jing
    Hu, Jinghui
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2025, 20 : 705 - 721
  • [39] Design of a reversible inversed pH-responsive caged protein
    Peng, Tao
    Lee, Hwankyu
    Lim, Sierin
    BIOMATERIALS SCIENCE, 2015, 3 (04) : 627 - 635
  • [40] New precursors for the preparation of pH-sensitive, targeting, and loaded non-porous bridged silsesquioxane nanoparticles
    Theron, C.
    Birault, A.
    Bernhardt, M.
    Ali, L. M. A.
    Nguyen, C.
    Gary-Bobo, M.
    Bartlett, J. R.
    Man, M. Wong Chi
    Carcel, C.
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2019, 89 (01) : 45 - 55