High granularity resistive Micromegas for tracking detectors in future experiments

被引:0
|
作者
Camerlingo, M. T. [1 ]
Alviggi, M. [1 ,2 ]
Biglietti, M. [3 ]
Della Pietra, M. [1 ,2 ]
Di Nardo, R. [3 ,4 ]
Iengo, P. [1 ]
Iodice, M. [3 ]
Petrucci, F. [3 ,4 ]
Sekhniaidze, G. [1 ]
Sessa, M. [5 ]
机构
[1] INFN, Sect Napoli, Via Cinthia 26, I-80126 Naples, Italy
[2] Univ Napoli Federico II, Via Cinthia 26, I-80126 Naples, Italy
[3] INFN, Sect Roma Tre, Via Vasca Navale 84, I-00146 Rome, Italy
[4] Univ Roma Tre, Via Vasca Navale 84, I-00146 Rome, Italy
[5] INFN, Sect Roma Tor Vergata, Via Ric Scientif 1, I-00133 Rome, Italy
来源
JOURNAL OF INSTRUMENTATION | 2024年 / 19卷 / 05期
关键词
Micropattern gaseous detectors s (MSGC; GEM; THGEM; RETHGEM; MHSP; MICROPIC; MICROMEGAS; InGrid; etc); Particle tracking detectors (Gaseous detectors);
D O I
10.1088/1748-0221/19/05/C05004
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
After exploring different solutions and testing several options, the high granularity resistive Micromegas technology is now mature enough to offer an efficient operation up to particle rates of 10 MHz/cm(2), maintaining the gas amplification above 10(4), with a large margin before breakdown in order to ensure a stable and reliable operation. The detector exploits small-size readout pads for occupancy reduction and a double Diamond-Like Carbon (DLC) resistive layer with a network of dot-connections to ground for a fast charge evacuation. The double-layer allows preserving the minimum resistance to suppress the discharge intensity for stable operations. The performance measured with particle beams at CERN have shown a spatial resolution below 100 mu m for mm-wide readout pads and a few ns time resolution. Now, the technology is being scaled to larger areas, with the construction of detectors with an active area of similar to 20x20 cm(2) (already achieved) and new similar to 40x50 cm(2) prototypes under construction. An overview of the detector technology, including the latest results, is presented in terms of the gain and rate capability (measured in the laboratory) and efficiency, time and spatial resolution (measured at the CERN SPS). Possible applications in HEP experiments, as well as future developments, are also reported.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Small-pad resistive Micromegas for high rate environment: Performance of different resistive protection concepts
    Alviggi, M.
    Canale, V
    Della Pietra, M.
    Di Donato, C.
    Farina, E.
    Franchino, S.
    Iengo, P.
    Iodice, M.
    Longo, L.
    Petrucci, F.
    Rossi, E.
    Salamanna, G.
    Sekhniaidze, G.
    Sidiropoulou, O.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 936 : 408 - 411
  • [32] A study of the coordinate gas-filled detectors based on the Micromegas and Micromegas + GEM/TGEM technologies for the muon tracking system of the CBM experiment
    E. V. Atkin
    S. S. Volkov
    A. G. Voronin
    V. V. Ivanov
    B. G. Komkov
    L. G. Kudin
    E. Z. Malankin
    V. N. Nikulin
    E. V. Roshchin
    G. V. Rybakov
    V. M. Samsonov
    O. P. Tarasenkova
    V. V. Shumikhin
    A. V. Khanzadeev
    E. A. Chernysheva
    Instruments and Experimental Techniques, 2015, 58 : 602 - 611
  • [33] Detectors and experiments at future neutrino facilities
    Dydak, F
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 118 : 233 - 241
  • [34] Development of CVD diamond tracking detectors for experiments at high-luminosity colliders
    Tuve, C.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2011, 34 (06): : 184 - 188
  • [35] Particle detectors for future collider experiments
    Checchia, P
    Ereditato, A
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2005, 8 (02) : 27 - 32
  • [36] Discharge reduction technologies for Micromegas detectors in high hadron flux environments
    Vandenbroucke, M.
    JOURNAL OF INSTRUMENTATION, 2012, 7
  • [37] Signal variations in high granularity Si pixel detectors
    Tlustos, L
    Campbell, M
    Heijne, E
    Llopart, X
    2003 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-5, 2004, : 1588 - 1593
  • [38] Resistive plate chambers in running and future experiments
    G. Bruno
    The European Physical Journal C - Particles and Fields, 2004, 33 : s1032 - s1034
  • [39] Resistive plate chambers in running and future experiments
    Bruno, G.
    EUROPEAN PHYSICAL JOURNAL C, 2004, 33 (Suppl 1): : S1032 - S1034
  • [40] Characterization of resistive Micromegas detectors for the upgrade of the T2K Near Detector Time Projection Chambers
    Attie, D.
    Batkiewicz-Kwasniak, M.
    Billoir, P.
    Blanchet, A.
    Blondel, A.
    Bolognesi, S.
    Calvet, D.
    Catanesi, M. G.
    Cicerchia, M.
    Cogo, G.
    Colas, P.
    Collazuol, G.
    Delbart, A.
    Dumarchez, J.
    Emery-Schrenk, S.
    Feltre, M.
    Giganti, C.
    Gramegna, F.
    Grassi, M.
    Guigue, M.
    Hamacher-Baumann, P.
    Hassani, S.
    Iacob, F.
    Jesus-Valls, C.
    Kurjata, R.
    Lamoureux, M.
    Lehuraux, M.
    Longhin, A.
    Lux, T.
    Magaletti, L.
    Marchi, T.
    Maurel, A.
    Mellet, L.
    Mezzetto, M.
    Munteanu, L.
    Nguyen, Q., V
    Orain, Y.
    Pari, M.
    Parraud, J-M
    Pastore, C.
    Pepato, A.
    Pierre, E.
    Popov, B.
    Przybiliski, H.
    Radermacher, T.
    Radicioni, E.
    Riallot, M.
    Roth, S.
    Rychter, A.
    Scomparin, L.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1025