Harnessing the dental cells derived from human induced pluripotent stem cells for hard tissue engineering

被引:3
|
作者
Kim, Eun-Jung [1 ]
Kim, Ka-Hwa [1 ]
Kim, Hyun-Yi [2 ]
Lee, Dong-Joon [1 ]
Li, Shujin [1 ]
Han, Mai Ngoc [1 ]
Jung, Han -Sung [1 ]
机构
[1] Yonsei Univ, Taste Res Ctr, Oral Sci Res Ctr,BK21 FOUR Project, Dept Oral Biol,Div Anat & Dev Biol,Coll Dent, Seoul 03722, South Korea
[2] NGeneS Inc, Ansan 15495, South Korea
基金
新加坡国家研究基金会;
关键词
EXTRACELLULAR-MATRIX; HYDROGEL; DIFFERENTIATION; MINERALIZATION; GEL;
D O I
10.1016/j.jare.2023.08.012
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Introduction: Most mineralized tissues in our body are present in bones and teeth. Human induced pluripotent stem cells (hiPSCs) are promising candidates for cell therapy to help regenerate bone defects and teeth loss. The extracellular matrix (ECM) is a non -cellular structure secreted by cells. Studies on the dynamic microenvironment of ECM are necessary for stem cell -based therapies. Objectives: We aim to optimize an effective protocol for hiPSC differentiation into dental cells without utilizing animal -derived factors or cell feeders that can be applied to humans and to mineralize differentiated dental cells into hard tissues. Methods: For the differentiation of both dental epithelial cells (DECs) and dental mesenchymal cells (DMCs) from hiPSCs, an embryoid body (EB) was formed from hiPSCs. hiPSC were differentiated into neural crest cells with an induction medium utilized in our previous study, and hiPSC-derived DECs were differentiated with a BMP-modulated customized medium. hiPSC-dental cells were then characterized, analyzed, and validated with transcriptomic analysis, western blotting, and RT-qPCR. To form mineralized tissues, hiPSC-derived DECs were recombined with hiPSC-derived DMCs encapsulated in various biomaterials, including gelatin methacryloyl (GelMA), collagen, and agar matrix. Results: These hiPSC-derived dental cells are highly osteogenic and chondro-osteogenic in photocrosslinkable GelMA hydrogel and collagen type I microenvironments. Furthermore, hiPSC-derived dental cells in agar gel matrix induced the formation of a bioengineered tooth. Conclusion: Our study provides an approach for applying hiPSCs for hard tissue regeneration, including tooth and bone. This study has immense potential to provide a novel technology for bioengineering organs for various regenerative therapies. (c) 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:119 / 131
页数:13
相关论文
共 50 条
  • [11] Induced pluripotent stem cells for neural tissue engineering
    Wang, Aijun
    Tang, Zhenyu
    Park, In-Hyun
    Zhu, Yiqian
    Patel, Shyam
    Daley, George Q.
    Li, Song
    BIOMATERIALS, 2011, 32 (22) : 5023 - 5032
  • [12] Deriving Osteogenic Cells from Induced Pluripotent Stem Cells for Bone Tissue Engineering
    Wu, Qingqing
    Yang, Bo
    Hu, Kevin
    Cao, Cong
    Man, Yi
    Wang, Ping
    TISSUE ENGINEERING PART B-REVIEWS, 2017, 23 (01) : 1 - 8
  • [13] Trophoblast lineage cells derived from human induced pluripotent stem cells
    Chen, Ying
    Wang, Kai
    Chandramouli, Gadisetti V. R.
    Knott, Jason G.
    Leach, Richard
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 436 (04) : 677 - 684
  • [14] Differentiation of tissue derived macrophages from induced pluripotent stem cells
    Kelk, J.
    De Paola, M.
    Comolli, D.
    Marrulli, F.
    Dacomo, L.
    Fumagalli, S.
    De Simoni, M. Grazia
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2022, 42 (1_SUPPL): : 177 - 177
  • [15] Endochondral Bone Tissue Engineering Using Human Induced Pluripotent Stem Cells
    Arakura, Michio
    Lee, Sang Yang
    Fukui, Tomoaki
    Oe, Keisuke
    Takahara, Shunsuke
    Matsumoto, Tomoyuki
    Hayashi, Shinya
    Matsushita, Takehiko
    Kuroda, Ryosuke
    Niikura, Takahiro
    TISSUE ENGINEERING PART A, 2022, 28 (3-4) : 184 - 195
  • [16] Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells
    Yamashita, Akihiro
    Liu, Shiying
    Woltjen, Knut
    Thomas, Bradley
    Meng, Guoliang
    Hotta, Akitsu
    Takahashi, Kazutoshi
    Ellis, James
    Yamanaka, Shinya
    Rancourt, Derrick E.
    SCIENTIFIC REPORTS, 2013, 3
  • [17] Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering
    Luo, Jiesi
    Qin, Lingfeng
    Kural, Mehmet H.
    Schwan, Jonas
    Li, Xia
    Bartulos, Oscar
    Cong, Xiao-qiang
    Ren, Yongming
    Gui, Liqiong
    Li, Guangxin
    Ellis, Matthew W.
    Li, Peining
    Kotton, Darrell N.
    Dardik, Alan
    Pober, Jordan S.
    Tellides, George
    Rolle, Marsha
    Campbell, Stuart
    Hawley, Robert J.
    Sachs, David H.
    Niklason, Laura E.
    Qyang, Yibing
    BIOMATERIALS, 2017, 147 : 116 - 132
  • [18] Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells
    Akihiro Yamashita
    Shiying Liu
    Knut Woltjen
    Bradley Thomas
    Guoliang Meng
    Akitsu Hotta
    Kazutoshi Takahashi
    James Ellis
    Shinya Yamanaka
    Derrick E. Rancourt
    Scientific Reports, 3
  • [19] Induced Pluripotent Stem Cells from Human Placental Chorion for Perinatal Tissue Engineering Applications
    Jiang, Guihua
    Di Bernardo, Julie
    DeLong, Cynthia J.
    da Rocha, Andre Monteiro
    O'Shea, K. Sue
    Kunisaki, Shaun M.
    TISSUE ENGINEERING PART C-METHODS, 2014, 20 (09) : 731 - 740
  • [20] Analysis of Circulating Waves in Tissue Rings derived from Human Induced Pluripotent Stem Cells
    Lu Zhang
    Junjun Li
    Li Liu
    Chao Tang
    Scientific Reports, 10