Generation and new infinite families of K2-hypohamiltonian graphs

被引:0
|
作者
Goedgebeur, Jan [1 ,2 ]
Renders, Jarne [1 ]
Zamfirescu, Carol T. [2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Campus Kulak Kortrijk, B-8500 Kortrijk, Belgium
[2] Univ Ghent, Dept Appl Math Comp Sci & Stat, B-9000 Ghent, Belgium
[3] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
关键词
Hamiltonian cycle; Hypohamiltonian; Exhaustive generation; Planar; Infinite family; Maximum degree;
D O I
10.1016/j.disc.2024.113981
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an algorithm which can generate all pairwise non-isomorphic K2-hypohamiltonian graphs, i.e. non-hamiltonian graphs in which the removal of any pair of adjacent vertices yields a hamiltonian graph, of a given order. We introduce new bounding criteria specifically designed for K2-hypohamiltonian graphs, allowing us to improve upon earlier computational results. Specifically, we characterise the orders for which K2hypohamiltonian graphs exist and improve existing lower bounds on the orders of the smallest planar and the smallest bipartite K2-hypohamiltonian graphs. Furthermore, we describe a new operation for creating K2-hypohamiltonian graphs that preserves planarity under certain conditions and use it to prove the existence of a planar K2-hypohamiltonian graph of order n for every integer n >= 134. Additionally, motivated by a theorem of Thomassen on hypohamiltonian graphs, we show the existence K2-hypohamiltonian graphs with large maximum degree and size.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] On the asymptotic spectrum of random walks on infinite families of graphs
    Grigorchuk, RI
    Zuk, A
    RANDOM WALKS AND DISCRETE POTENTIAL THEORY, 1999, 39 : 188 - 204
  • [32] INFINITE FAMILIES OF NEW SEMIFIELDS
    Ebert, Gary L.
    Marino, Giuseppe
    Polverino, Olga
    Trombetti, Rocco
    COMBINATORICA, 2009, 29 (06) : 637 - 663
  • [33] Infinite families of new semifields
    Gary L. Ebert
    Giuseppe Marino
    Olga Polverino
    Rocco Trombetti
    Combinatorica, 2009, 29 : 637 - 663
  • [34] On an infinite family of graphs with information ratio 2-1/k
    Csirmaz, Laszlo
    Ligeti, Peter
    COMPUTING, 2009, 85 (1-2) : 127 - 136
  • [35] k-CS-transitive infinite graphs
    Gray, Robert
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (02) : 378 - 398
  • [36] > k-homogeneous infinite graphs
    Ahlman, Ove
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 128 : 160 - 174
  • [37] On LDPC Codes Corresponding to Infinite Family of Graphs A(k, K)
    Polak, Monika
    Ustimenko, Vasyl
    2012 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2012, : 567 - 570
  • [38] PROPERTIES OF CERTAIN FAMILIES OF 2K-CYCLE-FREE GRAPHS
    LAZEBNIK, F
    USTIMENKO, VA
    WOLDAR, AJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 60 (02) : 293 - 298
  • [39] New families of graceful graphs
    Youssef, MZ
    ARS COMBINATORIA, 2003, 67 : 303 - 311
  • [40] New families of sequential graphs
    Wu, SL
    ARS COMBINATORIA, 2003, 69 : 9 - 17