NEUMANN PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONS INVOLVING VARIABLE EXPONENT AND MEASURE DATA

被引:0
|
作者
Benboubker, Mohamed Badr [1 ]
Ouaro, Stanislas [2 ]
Traore, Urbain [3 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Higher Sch Technol, Fes, Morocco
[2] Univ Ouagadougou, Lab Anal Math Equat LAME, UFR, Sci Exactes & Appl, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
[3] Univ Joseph KI ZERBO, Lab Math & Informat LAMI, Ouagadougou, Burkina Faso
关键词
Nonlinear elliptic problem; variable exponents; entropy solution; Neumann boundary conditions; Radon measure; BOUNDARY-VALUE-PROBLEMS; ENTROPY SOLUTIONS; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the question of the existence of entropy solutions for the problem - div ( a ( x, u, del u ) + Phi( u )) + g ( x, u, del u ) = mu posed in an open bounded subset ohm of R- N with the homogeneous Neumann boundary condition ( a ( x, u, del u ) + Phi( u )) <middle dot> eta = 0 . The functional setting involves Lebesgue and Sobolev spaces with variable exponent.
引用
收藏
页码:13 / 40
页数:28
相关论文
共 50 条