FedBed: Benchmarking Federated Learning over Virtualized Edge Testbeds

被引:0
|
作者
Symeonides, Moysis [1 ]
Nikolaidis, Fotis [2 ]
Trihinas, Demetris [3 ]
Pallis, George [1 ]
Dikaiakos, Marios D. [1 ]
Bilas, Angelos [2 ]
机构
[1] Univ Cyprus, Nicosia, Cyprus
[2] FORTH ICS, Iraklion, Crete, Greece
[3] Univ Nicosia, Nicosia, Cyprus
关键词
Federated Learning; Edge Computing;
D O I
10.1145/3603166.3632138
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning has become the de facto paradigm for training AI models under a distributed modality where the computational effort is spread across several clients without sharing local data. Despite its distributed nature, enabling FL in an Edge-Cloud continuum is challenging with resource and network heterogeneity, different AI models and libraries, and non-uniform data distributions, all hampering QoS and limiting innovation potential. This work introduces FedBed, a testing framework that enables the rapid and reproducible benchmarking of FL deployments on virtualized testbeds. FedBed aids users in assessing the numerous trade-offs that result from combining a variety of FL software and infrastructure configurations in Edge-Cloud settings. This reduces the time-consuming process that includes the setup of either a virtual physical or emulation testbed, experiment configurations, and the monitoring of the resulting FL testbed.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Accelerating Federated Edge Learning
    Nguyen, Tuan Dung
    Balef, Amir R.
    Dinh, Canh T.
    Tran, Nguyen H.
    Ngo, Duy T.
    Anh Le, Tuan
    Vo, Phuong L.
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3282 - 3286
  • [22] Edge Robotics Experimentation over Next Generation IIoT Testbeds
    Dechouniotis, Dimitrios
    Spatharakis, Dimitrios
    Papavassiliou, Symeon
    PROCEEDINGS OF THE IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2022, 2022,
  • [23] Assessing and enhancing a Cloud-IoT monitoring service over federated testbeds
    Gaglianese, M.
    Forti, S.
    Paganelli, F.
    Brogi, A.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 147 : 77 - 92
  • [24] Semi-Asynchronous Over-the-Air Federated Learning Over Heterogeneous Edge Devices
    Kou, Zhoubin
    Ji, Yun
    Yang, Danni
    Zhang, Sheng
    Zhong, Xiaoxiong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (01) : 110 - 125
  • [25] Hierarchical Personalized Federated Learning Over Massive Mobile Edge Computing Networks
    You, Chaoqun
    Guo, Kun
    Yang, Howard H.
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (11) : 8141 - 8157
  • [26] Optimal Privacy Preserving in Wireless Federated Learning over Mobile Edge Computing
    Nguyen, Hai M.
    Chu, Nam H.
    Nguyen, Diep N.
    Dinh Thai Hoang
    Minh Hoang Ha
    Dutkiewicz, Eryk
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 2000 - 2006
  • [27] Reconfigurable Intelligent Surface Empowered Over-the-Air Federated Edge Learning
    Liu, Hang
    Lin, Zehong
    Yuan, Xiaojun
    Zhang, Ying-Jun Angela
    IEEE WIRELESS COMMUNICATIONS, 2023, 30 (06) : 111 - 118
  • [28] Semi-Synchronous Personalized Federated Learning Over Mobile Edge Networks
    You, Chaoqun
    Feng, Daquan
    Guo, Kun
    Yang, Howard H.
    Feng, Chenyuan
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (04) : 2262 - 2277
  • [29] Semi-Asynchronous Federated Edge Learning for Over-the-air Computation
    Kou, Zhoubin
    Ji, Yun
    Zhong, Xiaoxiong
    Zhang, Sheng
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1351 - 1356
  • [30] Optimized Power Control Design for Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Zhu, Guangxu
    Xu, Jie
    Wang, Zhiqin
    Cui, Shuguang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (01) : 342 - 358