FedBed: Benchmarking Federated Learning over Virtualized Edge Testbeds

被引:0
|
作者
Symeonides, Moysis [1 ]
Nikolaidis, Fotis [2 ]
Trihinas, Demetris [3 ]
Pallis, George [1 ]
Dikaiakos, Marios D. [1 ]
Bilas, Angelos [2 ]
机构
[1] Univ Cyprus, Nicosia, Cyprus
[2] FORTH ICS, Iraklion, Crete, Greece
[3] Univ Nicosia, Nicosia, Cyprus
关键词
Federated Learning; Edge Computing;
D O I
10.1145/3603166.3632138
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning has become the de facto paradigm for training AI models under a distributed modality where the computational effort is spread across several clients without sharing local data. Despite its distributed nature, enabling FL in an Edge-Cloud continuum is challenging with resource and network heterogeneity, different AI models and libraries, and non-uniform data distributions, all hampering QoS and limiting innovation potential. This work introduces FedBed, a testing framework that enables the rapid and reproducible benchmarking of FL deployments on virtualized testbeds. FedBed aids users in assessing the numerous trade-offs that result from combining a variety of FL software and infrastructure configurations in Edge-Cloud settings. This reduces the time-consuming process that includes the setup of either a virtual physical or emulation testbed, experiment configurations, and the monitoring of the resulting FL testbed.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The Design of an Instrumentation System for Federated and Virtualized Network Testbeds
    Griffioen, James
    Fei, Zongming
    Nasir, Hussamuddin
    Wu, Xiongqi
    Reed, Jeremy
    Carpenter, Charles
    2012 IEEE NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (NOMS), 2012, : 1260 - 1267
  • [2] Hierarchical Over-the-Air Federated Edge Learning
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3376 - 3381
  • [3] An Overview on Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Lyu, Zhonghao
    Zhu, Guangxu
    Xu, Jie
    Xu, Lexi
    Cui, Shuguang
    IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 202 - 210
  • [4] Decentralized Federated Learning on the Edge Over Wireless Mesh Networks
    Salama, Abdelaziz
    Stergioulis, Achilleas
    Zaidi, Syed Ali Raza
    McLernon, Des
    IEEE ACCESS, 2023, 11 : 124709 - 124724
  • [5] Federated Edge Learning With Misaligned Over-the-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 3951 - 3964
  • [6] Federated Edge Learning with Misaligned Over-The-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2021, : 236 - 240
  • [7] Over-the-Air Federated Edge Learning With Hierarchical Clustering
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 17856 - 17871
  • [8] Experimental Demonstration of Live Migration Impact on virtualized 5G Network using Federated Testbeds
    Ramanathan, S.
    Kondepu, K.
    Mirkhanzadeh, B.
    Zhang, T.
    Razo, M.
    Tacca, M.
    Valcarenghi, L.
    Fumagalli, A.
    2019 IEEE CONFERENCE ON NETWORK FUNCTION VIRTUALIZATION AND SOFTWARE DEFINED NETWORKS (IEEE NFV-SDN), 2019,
  • [9] Edge assignment in edge federated learning
    Do, Thuy
    Tran, Duc A.
    Vo, Anh
    SN APPLIED SCIENCES, 2023, 5 (11):
  • [10] Edge assignment in edge federated learning
    Thuy Do
    Duc A. Tran
    Anh Vo
    SN Applied Sciences, 2023, 5