Intelligent fault diagnosis of multi-sensor rolling bearings based on variational mode extraction and a lightweight deep neural network

被引:0
|
作者
Wang, Shouqi [1 ]
Feng, Zhigang [1 ]
机构
[1] Shenyang Aerosp Univ, Dept Automat, Shenyang 110136, Peoples R China
关键词
rolling bearing; intelligent fault diagnosis; VME; variational mode extraction; lightweight deep neural network; TRANSFORM; FUSION;
D O I
10.1504/IJSISE.2024.139995
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
After a rolling bearing failure in an industrial complex environment, the vibration signals collected by the sensors can easily be corrupted by a wide range of noise information, affecting the effectiveness of the feature extraction process. Although deep learning models can extract fault features better, most of the models currently used have complex structures with many parameters and cannot be deployed in embedded environments. In this paper, we propose an intelligent fault diagnosis method combining variational mode extraction (VME) with lightweight deep neural networks, which has the advantages of anti-noise robustness and model lightweight. Firstly, VME is used to process the vibration signals of different sensors to obtain the required modal component signals and convert them into greyscale images. Subsequently, the improved lightweight deep neural network Bypass-SqueezeNet is used for fault diagnosis. Several experiments are conducted on the experimental dataset, and the final experimental results prove that the method proposed in this paper possesses more satisfactory diagnostic performance.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A fault diagnosis model for rolling bearings based on a multi-input layer convolutional neural network
    Zan T.
    Wang H.
    Liu Z.
    Wang M.
    Gao X.
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (12): : 142 - 149and163
  • [32] Intelligent fault diagnosis of rolling bearings using a semi-supervised convolutional neural network
    Wu, Yaochun
    Zhao, Rongzhen
    Jin, Wuyin
    He, Tianjing
    Ma, Sencai
    Shi, Mingkuan
    [J]. APPLIED INTELLIGENCE, 2021, 51 (04) : 2144 - 2160
  • [33] Intelligent fault diagnosis of rolling bearings based on the visibility algorithm and graph neural networks
    Shaohui Ning
    Yonglei Ren
    Yukun Wu
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [34] Intelligent fault diagnosis of rolling bearings using a semi-supervised convolutional neural network
    Yaochun Wu
    Rongzhen Zhao
    Wuyin Jin
    Tianjing He
    Sencai Ma
    Mingkuan Shi
    [J]. Applied Intelligence, 2021, 51 : 2144 - 2160
  • [35] EnvelopeNet: A robust convolutional neural network with optimal kernels for intelligent fault diagnosis of rolling bearings
    Tang, Lv
    Xuan, Jianping
    Shi, Tielin
    Zhang, Qing
    [J]. MEASUREMENT, 2021, 180
  • [36] FAULT DIAGNOSIS OF ROLLING BEARINGS BASED ON MULTI-SCALE ENTROPY AND ENSEMBLED ARTIFICIAL NEURAL NETWORK
    Chen, Fen
    Liu, Quan
    Wei, Qin
    Ting, Deng
    Ting, Yan
    Su Wenqin
    Peng Bingjie
    Zhao, Lei
    [J]. PROCEEDINGS OF THE ASME 9TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2014, VOL 2, 2014,
  • [37] Intelligent fault diagnosis of rolling bearings using variational mode decomposition and self-organizing feature map
    Zhang, Jialing
    Wu, Jimei
    Hu, Bingbing
    Tang, Jiahui
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2020, 26 (21-22) : 1886 - 1897
  • [38] A Novel Intelligent Fault Diagnosis Method Based on Variational Mode Decomposition and Ensemble Deep Belief Network
    Zhang, Chao
    Zhang, Yibin
    Hu, Chenxi
    Liu, Zhenbao
    Cheng, Liye
    Zhou, Yong
    [J]. IEEE ACCESS, 2020, 8 : 36293 - 36312
  • [39] Aeroengine Bearing Fault Diagnosis Based on Convolutional Neural Network for Multi-sensor Information Fusion
    Yang J.
    Wan A.
    Wang J.
    Shan T.
    Miao X.
    Li K.
    Zuo Q.
    [J]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2022, 42 (13): : 4933 - 4941
  • [40] Fault diagnosis for launch vehicle based on multi-sensor information fusion and rough neural network
    Zhao Junyang
    Mang Zhili
    Jiang Xiaocun
    [J]. ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 3856 - 3858