Synthesizing 3D Multi-Contrast Brain Tumor MRIs Using Tumor Mask Conditioning

被引:0
|
作者
Truong, Nghi C. D. [1 ]
Yogananda, Chandan Ganesh Bangalore [1 ]
Wagner, Benjamin C. [1 ]
Holcomb, James M. [1 ]
Reddy, Divya [1 ]
Saadat, Niloufar [1 ]
Hatanpaa, Kimmo J. [2 ]
Patel, Toral R. [3 ]
Fei, Baowei [1 ,4 ]
Lee, Matthew D. [5 ]
Jain, Rajan [5 ,6 ]
Bruce, Richard J. [7 ]
Pinho, Marco C. [1 ]
Madhuranthakam, Ananth J. [1 ]
Maldjian, Joseph A. [1 ]
机构
[1] UT Southwestern Med Ctr, Dept Radiol, Dallas, TX 75390 USA
[2] UT Southwestern Med Ctr, Dept Pathol, Dallas, TX USA
[3] UT Southwestern Med Ctr, Dept Neurol Surg, Dallas, TX USA
[4] Univ Texas Dallas, Dept Bioengn, Richardson, TX USA
[5] NYU Grossman Sch Med, Dept Radiol, New York, NY USA
[6] NYU Grossman Sch Med, Dept Neurosurg, New York, NY USA
[7] Univ Wisconsin Madison, Dept Radiol, Madison, WI USA
关键词
Latent diffusion model; Generative models; Brain tumor imaging; Synthetic data;
D O I
10.1117/12.3009331
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data scarcity and data imbalance are two major challenges in training deep learning models on medical images, such as brain tumor MRI data. The recent advancements in generative artificial intelligence have opened new possibilities for synthetically generating MRI data, including brain tumor MRI scans. This approach can be a potential solution to mitigate the data scarcity problem and enhance training data availability. This work focused on adapting the 2D latent diffusion models to generate 3D multi-contrast brain tumor MRI data with a tumor mask as the condition. The framework comprises two components: a 3D autoencoder model for perceptual compression and a conditional 3D Diffusion Probabilistic Model (DPM) for generating high-quality and diverse multi-contrast brain tumor MRI samples, guided by a conditional tumor mask. Unlike existing works that focused on generating either 2D multi-contrast or 3D single-contrast MRI samples, our models generate multi-contrast 3D MRI samples. We also integrated a conditional module within the UNet backbone of the DPM to capture the semantic class-dependent data distribution driven by the provided tumor mask to generate MRI brain tumor samples based on a specific brain tumor mask. We trained our models using two brain tumor datasets: The Cancer Genome Atlas (TCGA) public dataset and an internal dataset from the University of Texas Southwestern Medical Center (UTSW). The models were able to generate high-quality 3D multi-contrast brain tumor MRI samples with the tumor location aligned by the input condition mask. The quality of the generated images was evaluated using the Fr ' echet Inception Distance (FID) score. This work has the potential to mitigate the scarcity of brain tumor data and improve the performance of deep learning models involving brain tumor MRI data.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Brain Tumor Segmentation Using 3D Convolutional Neural Network
    Liang, Kaisheng
    Lu, Wenlian
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 199 - 207
  • [22] Evaluation of 3D multi-contrast carotid vessel wall MRI: a comparative study
    Wei, Hanyu
    Zhang, Miaoqi
    Li, Yunduo
    Zhao, Xihai
    Canton, Gador
    Sun, Jie
    Xu, Dongxiang
    Zhou, Zechen
    Chen, Shuo
    Ferguson, Marina S.
    Hatsukami, Thomas S.
    Li, Rui
    Yuan, Chun
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2020, 10 (01) : 269 - 282
  • [23] 3D Neural Networks for Visceral and Subcutaneous Adipose Tissue Segmentation using Volumetric Multi-Contrast MRI
    Kafali, Sevgi Gokce
    Shih, Shu-Fu
    Li, Xinzhou
    Chowdhury, Shilpy
    Loong, Spencer
    Barnes, Samuel
    Li, Zhaoping
    Wu, Holden H.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3933 - 3937
  • [24] A novel brain tumor segmentation method for multi-modality human brain MRIs
    Zhan, Tianming
    Gu, Shenghua
    Jiang, Lei
    Zhan, Yongzhao
    International Journal of Multimedia and Ubiquitous Engineering, 2015, 10 (11): : 115 - 122
  • [25] Classification of Brain Tumor MRIs Using a Kernel Support Vector Machine
    Abd-Ellah, Mahmoud Khaled
    Awad, Ali Ismail
    Khalaf, Ashraf A. M.
    Hamed, Hesham F. A.
    BUILDING SUSTAINABLE HEALTH ECOSYSTEMS, 2016, 636 : 151 - 160
  • [26] Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis
    Moraal, Bastiaan
    Roosendaal, Stefan D.
    Pouwels, Petra J. W.
    Vrenken, Hugo
    van Schijndel, Ronald A.
    Meier, Dominik S.
    Guttmann, Charles R. G.
    Geurts, Jeroen J. G.
    Barkhof, Frederik
    NEURORADIOLOGY JOURNAL, 2009, 22 : 33 - 42
  • [27] Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis
    Moraal, Bastiaan
    Roosendaal, Stefan D.
    Pouwels, Petra J. W.
    Vrenken, Hugo
    Van Schijndel, Ronald A.
    Meier, Dominik S.
    Guttmann, Charles R. G.
    Geurts, Jeroen J. G.
    Barkhof, Frederik
    EUROPEAN RADIOLOGY, 2008, 18 (10) : 2311 - 2320
  • [28] Assessing the efficacy of 3D Dual-CycleGAN model for multi-contrast MRI synthesis
    Mahboubisarighieh, Ali
    Shahverdi, Hossein
    Nesheli, Shabnam Jafarpoor
    Kermani, Mohammad Alipoor
    Niknam, Milad
    Torkashvand, Mohanna
    Rezaeijo, Seyed Masoud
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2024, 55 (01):
  • [29] Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis
    Bastiaan Moraal
    Stefan D. Roosendaal
    Petra J. W. Pouwels
    Hugo Vrenken
    Ronald A. van Schijndel
    Dominik S. Meier
    Charles R. G. Guttmann
    Jeroen J. G. Geurts
    Frederik Barkhof
    European Radiology, 2008, 18
  • [30] Combined 3D CNN for Brain Tumor Segmentation
    Ahmad, Parvez
    Jin, Hai
    Qamar, Saqib
    Zheng, Ran
    Jiang, Wenbin
    THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2020), 2020, : 113 - 116