Machine-Learning-Assisted Design of a Robust Biomimetic Radiative Cooling Metamaterial

被引:1
|
作者
Ding, Zhenmin [1 ]
Li, Xin [1 ]
Ji, Qingxiang [2 ]
Zhang, Yunce [2 ]
Li, Honglin [1 ]
Zhang, Hulin [2 ]
Pattelli, Lorenzo [4 ]
Li, Yao [2 ,3 ]
Xu, Hongbo [1 ]
Zhao, Jiupeng [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150001, Peoples R China
[3] Suzhou Lab, Suzhou 215123, Peoples R China
[4] INRIM Ist Nazl Ric Metrol, I-10135 Turin, Italy
来源
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
47;
D O I
10.1021/acsmaterialslett.4c00337
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, biomimetic photonic structural materials have significantly improved their radiative cooling performance. However, most research has focused on understanding cooling mechanisms, with limited exploration of sensitive parameter variations. Traditional numerical methods are costly and time-consuming and often struggle to identify optimal solutions, limiting the scope of high-performance microstructure design. To address these challenges, we integrated machine learning into the design of Batocera LineolataHope bionic photonic structures, using SiO2 as the substrate. Deep learning models provided insights into the complex relationship between bionic metamaterials and their spectral response, enabling us to identify the optimal performance parameter range for truncated cone arrays (height-to-diameter ratio (H/D-bottom) from 0.8 to 2.4), achieving a high average emissivity of 0.985. Experimentally, the noon temperature of fabricated samples decreased by about 8.3 degrees C. This data-driven approach accelerates the design and optimization of robust biomimetic radiative cooling metamaterials, promising significant advancements in standardized passive radiative cooling applications.
引用
收藏
页码:2416 / 2424
页数:9
相关论文
共 50 条
  • [21] Machine-Learning-Assisted Composition Design for High-Yield-Strength TWIP Steel
    Zhou, Xiaozhou
    Xu, Jiangjie
    Meng, Li
    Wang, Wenshan
    Zhang, Ning
    Jiang, Lei
    METALS, 2024, 14 (08)
  • [22] Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization
    Kudyshev, Zhaxylyk A.
    Kildishev, Alexander V.
    Shalaev, Vladimir M.
    Boltasseva, Alexandra
    APPLIED PHYSICS REVIEWS, 2020, 7 (02)
  • [23] Machine-learning-assisted design of high strength steel I-section columns
    Cheng, Jinpeng
    Li, Xuelai
    Jiang, Ke
    Li, Shuai
    Su, Andi
    Zhao, Ou
    ENGINEERING STRUCTURES, 2024, 308
  • [24] Machine-Learning-Assisted Intelligent Processing and Optimization of Complex Systems
    Luo, Xiong
    Yuan, Manman
    PROCESSES, 2023, 11 (09)
  • [25] Machine-learning-assisted materials discovery using failed experiments
    Paul Raccuglia
    Katherine C. Elbert
    Philip D. F. Adler
    Casey Falk
    Malia B. Wenny
    Aurelio Mollo
    Matthias Zeller
    Sorelle A. Friedler
    Joshua Schrier
    Alexander J. Norquist
    Nature, 2016, 533 : 73 - 76
  • [26] Machine-learning-assisted design of depth-graded multilayer X-ray structure
    Dieb, Thaer M.
    Ishii, Masashi
    PHOTONIC INSTRUMENTATION ENGINEERING VII, 2020, 11287
  • [27] Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
    Wu, Stephen
    Kondo, Yukiko
    Kakimoto, Masa-aki
    Yang, Bin
    Yamada, Hironao
    Kuwajima, Isao
    Lambard, Guillaume
    Hongo, Kenta
    Xu, Yibin
    Shiomi, Junichiro
    Schick, Christoph
    Morikawa, Junko
    Yoshida, Ryo
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [28] A Novel Algebraic Stress Model with Machine-Learning-Assisted Parameterization
    Jiang, Chao
    Mi, Junyi
    Laima, Shujin
    Li, Hui
    ENERGIES, 2020, 13 (01)
  • [29] Machine-Learning-Assisted Recognition on Bioinspired Soft Sensor Arrays
    Luo, Yang
    Xiao, Xiao
    Chen, Jun
    Li, Qian
    Fu, Hongyan
    ACS NANO, 2022, 16 (04) : 6734 - 6743
  • [30] Retrospective machine-learning-assisted analysis of the immune infiltrate in osteosarcoma
    Stupnicki, A. D.
    Oyesola, S.
    Ryan, L.
    Butters, T.
    Flanagan, A.
    JOURNAL OF PATHOLOGY, 2024, 264 : S36 - S36