Machine-Learning-Assisted Design of a Robust Biomimetic Radiative Cooling Metamaterial

被引:1
|
作者
Ding, Zhenmin [1 ]
Li, Xin [1 ]
Ji, Qingxiang [2 ]
Zhang, Yunce [2 ]
Li, Honglin [1 ]
Zhang, Hulin [2 ]
Pattelli, Lorenzo [4 ]
Li, Yao [2 ,3 ]
Xu, Hongbo [1 ]
Zhao, Jiupeng [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150001, Peoples R China
[3] Suzhou Lab, Suzhou 215123, Peoples R China
[4] INRIM Ist Nazl Ric Metrol, I-10135 Turin, Italy
来源
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
47;
D O I
10.1021/acsmaterialslett.4c00337
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, biomimetic photonic structural materials have significantly improved their radiative cooling performance. However, most research has focused on understanding cooling mechanisms, with limited exploration of sensitive parameter variations. Traditional numerical methods are costly and time-consuming and often struggle to identify optimal solutions, limiting the scope of high-performance microstructure design. To address these challenges, we integrated machine learning into the design of Batocera LineolataHope bionic photonic structures, using SiO2 as the substrate. Deep learning models provided insights into the complex relationship between bionic metamaterials and their spectral response, enabling us to identify the optimal performance parameter range for truncated cone arrays (height-to-diameter ratio (H/D-bottom) from 0.8 to 2.4), achieving a high average emissivity of 0.985. Experimentally, the noon temperature of fabricated samples decreased by about 8.3 degrees C. This data-driven approach accelerates the design and optimization of robust biomimetic radiative cooling metamaterials, promising significant advancements in standardized passive radiative cooling applications.
引用
收藏
页码:2416 / 2424
页数:9
相关论文
共 50 条
  • [1] Machine-Learning-Assisted Optimization for Antenna Geometry Design
    Wu, Qi
    Chen, Weiqi
    Yu, Chen
    Wang, Haiming
    Hong, Wei
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (03) : 2083 - 2095
  • [2] Machine-learning-assisted modeling
    Greenstreet, Sarah
    PHYSICS TODAY, 2021, 74 (07) : 42 - 47
  • [3] Machine-Learning-Assisted Design of Highly Tough Thermosetting Polymers
    Hu, Yaxi
    Zhao, Wenlin
    Wang, Liquan
    Lin, Jiaping
    Du, Lei
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (49) : 55004 - 55016
  • [4] Machine-learning-assisted inverse design of scattering enhanced metasurface
    Lin, Hai
    Hou, Junjie
    Jin, Jing
    Wang, Yumei
    Tang, Rongxin
    Shi, Xintong
    Tian, Yuze
    Xu, Weilin
    OPTICS EXPRESS, 2022, 30 (02) : 3076 - 3088
  • [5] Unified machine-learning-assisted design of stainless steel bolted connections
    Jiang, Ke
    Zhao, Ou
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2023, 211
  • [6] Machine-learning-assisted molecular design of phenylnaphthylamine-type antioxidants
    Du, Shanda
    Wang, Xiujuan
    Wang, Runguo
    Lu, Ling
    Luo, Yanlong
    You, Guohua
    Wu, Sizhu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (21) : 13399 - 13410
  • [7] Machine-learning-assisted hydrogen adsorption descriptor design for bilayer MXenes
    Tian, Weizhi
    Ren, Gongchang
    Wu, Yuanting
    Lu, Sen
    Huan, Yuan
    Peng, Tiren
    Liu, Peng
    Sun, Jiangong
    Su, Hui
    Cui, Hong
    JOURNAL OF CLEANER PRODUCTION, 2024, 450
  • [8] Machine-Learning-Assisted Synthesis of Polar Racemates
    Nisbet, Matthew L.
    Pendleton, Ian M.
    Nolis, Gene M.
    Griffith, Kent J.
    Schrier, Joshua
    Cabana, Jordi
    Norquist, Alexander J.
    Poeppelmeier, Kenneth R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (16) : 7555 - 7566
  • [9] Machine-learning-assisted selection of antibiotic prescription
    Didelot, Xavier
    Pouwels, Koen B.
    NATURE MEDICINE, 2019, 25 (07) : 1033 - 1034
  • [10] Machine-learning-assisted selection of antibiotic prescription
    Xavier Didelot
    Koen B. Pouwels
    Nature Medicine, 2019, 25 : 1033 - 1034