Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models

被引:0
|
作者
Pineda-Antunez, Carlos [1 ]
Seguin, Claudia [2 ]
van Duuren, Luuk A. [3 ]
Knudsen, Amy B. [2 ]
Davidi, Barak [2 ]
de Lima, Pedro Nascimento [4 ]
Rutter, Carolyn [5 ]
Kuntz, Karen M. [6 ]
Lansdorp-Vogelaar, Iris [3 ]
Collier, Nicholson [7 ,8 ]
Ozik, Jonathan [7 ,8 ]
Alarid-Escudero, Fernando [9 ,10 ]
机构
[1] Univ Washington, Comparat Hlth Outcomes Policy & Econ CHOICE Inst, Seattle, WA 98195 USA
[2] Massachusetts Gen Hosp, Inst Technol Assessment, Boston, MA USA
[3] Erasmus MC, Dept Publ Hlth, Rotterdam, Netherlands
[4] RAND Corp, Arlington, VA USA
[5] Fred Hutchinson Canc Ctr, Hutchinson Inst Canc Outcomes Res, Publ Hlth Sci Div, Biostat Program, Seattle, WA USA
[6] Univ Minnesota, Sch Publ Hlth, Div Hlth Policy & Management, Minneapolis, MN USA
[7] Argonne Natl Lab, Decis & Infrastruct Sci Div, Lemont, IL USA
[8] Univ Chicago, Consortium Adv Sci & Engn, Chicago, IL USA
[9] Stanford Univ, Sch Med, Dept Hlth Policy, 615 Crothers Way,117,Encina Commons,MC 6019, Stanford, CA 94305 USA
[10] Stanford Univ, Freeman Spogli Inst, Ctr Hlth Policy, Stanford, CA USA
关键词
artificial neural networks; Bayesian calibration; colorectal cancer model; emulator; machine learning;
D O I
10.1177/0272989X241255618
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Purpose To calibrate Cancer Intervention and Surveillance Modeling Network (CISNET)'s SimCRC, MISCAN-Colon, and CRC-SPIN simulation models of the natural history colorectal cancer (CRC) with an emulator-based Bayesian algorithm and internally validate the model-predicted outcomes to calibration targets.Methods We used Latin hypercube sampling to sample up to 50,000 parameter sets for each CISNET-CRC model and generated the corresponding outputs. We trained multilayer perceptron artificial neural networks (ANNs) as emulators using the input and output samples for each CISNET-CRC model. We selected ANN structures with corresponding hyperparameters (i.e., number of hidden layers, nodes, activation functions, epochs, and optimizer) that minimize the predicted mean square error on the validation sample. We implemented the ANN emulators in a probabilistic programming language and calibrated the input parameters with Hamiltonian Monte Carlo-based algorithms to obtain the joint posterior distributions of the CISNET-CRC models' parameters. We internally validated each calibrated emulator by comparing the model-predicted posterior outputs against the calibration targets.Results The optimal ANN for SimCRC had 4 hidden layers and 360 hidden nodes, MISCAN-Colon had 4 hidden layers and 114 hidden nodes, and CRC-SPIN had 1 hidden layer and 140 hidden nodes. The total time for training and calibrating the emulators was 7.3, 4.0, and 0.66 h for SimCRC, MISCAN-Colon, and CRC-SPIN, respectively. The mean of the model-predicted outputs fell within the 95% confidence intervals of the calibration targets in 98 of 110 for SimCRC, 65 of 93 for MISCAN, and 31 of 41 targets for CRC-SPIN.Conclusions Using ANN emulators is a practical solution to reduce the computational burden and complexity for Bayesian calibration of individual-level simulation models used for policy analysis, such as the CISNET CRC models. In this work, we present a step-by-step guide to constructing emulators for calibrating 3 realistic CRC individual-level models using a Bayesian approach.
引用
收藏
页码:543 / 553
页数:11
相关论文
共 50 条
  • [21] Emulator-based decomposition for structural sensitivity of core-level spectra
    Niskanen, J.
    Vladyka, A.
    Niemi, J.
    Sahle, C. J.
    ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (06):
  • [22] An Emulator-Based Rapid Source Localization Approach in Informative Sensor Planning
    Tagade, Piyush
    Choi, Han-Lim
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 691 - 696
  • [23] On the dynamics of a new memristive diode emulator-based Chua's circuit
    Tchiedjo, Servet Kamdem
    Kenmoe, Germaine Djuidje
    Kengne, Jacques
    PHYSICA SCRIPTA, 2023, 98 (10)
  • [24] Targeting Bufferbloat in Wi-Fi Networks: An Emulator-based Approach
    Do Thi Thu Hien
    Thanh Duc Ngo
    Duy-Dinh Le
    Sekiya, Hiroo
    Van-Hau Pham
    Nguyen, Kien
    ISCIT 2019: PROCEEDINGS OF 2019 19TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), 2019, : 102 - 107
  • [25] Calibration of adhesion models based on Bayesian inference
    Albuquerque, E. B.
    Castello, D. A.
    Borges, L. A.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2016, 24 (05) : 785 - 810
  • [26] Demo Abstract: A HIL Emulator-Based Cyber Security Testbed for DC Microgrids
    Liu, Mengxiang
    Jin, Zexuan
    Xia, Jinhui
    Sun, Mingyang
    Deng, Ruilong
    Cheng, Peng
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [27] A calibration and data assimilation method using the Bayesian MARS emulator
    Stripling, H. F.
    McClarren, R. G.
    Kuranz, C. C.
    Grosskopf, M. J.
    Rutter, E.
    Torralva, B. R.
    ANNALS OF NUCLEAR ENERGY, 2013, 52 : 103 - 112
  • [28] Controlling extreme multistability of memristor emulator-based dynamical circuit in flux–charge domain
    Mo Chen
    Mengxia Sun
    Bocheng Bao
    Huagan Wu
    Quan Xu
    Jiang Wang
    Nonlinear Dynamics, 2018, 91 : 1395 - 1412
  • [29] Emulator-based control and internal model control: Complementary approaches to robust control design
    Gawthrop, PJ
    Jones, RW
    Sbarbaro, DG
    AUTOMATICA, 1996, 32 (08) : 1223 - 1227
  • [30] Robust fault-tolerant control using an accurate emulator-based identification technique
    Doraiswami, Rajamani
    Cheded, Lahouari
    INTERNATIONAL JOURNAL OF CONTROL, 2018, 91 (07) : 1473 - 1488