How Machine Learning Might Help Improve Cardiac Imaging

被引:0
|
作者
Anderer, Samantha
Hswen, Yulin
机构
来源
关键词
D O I
10.1001/jama.2023.23070
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In this Medical News interview, University of California, San Francisco, cardiologist Rima Arnaout, joins JAMA Editor in Chief Kirsten Bibbins-Domingo to discuss the transformative potential of AI on cardiac imaging.
引用
收藏
页码:995 / 997
页数:3
相关论文
共 50 条
  • [31] HOW MIGHT YOGA HELP DEPRESSION? A NEUROBIOLOGICAL PERSPECTIVE
    Kinser, Patricia Anne
    Goehler, Lisa Elane
    Taylor, Ann Gill
    EXPLORE-THE JOURNAL OF SCIENCE AND HEALING, 2012, 8 (02) : 118 - 126
  • [33] New imaging technology might help prevent stroke
    Choo, V
    LANCET, 1998, 351 (9105): : 809 - 809
  • [35] Cardiac imaging in the digital era: how can the technicians help us further
    Maarten Groenink
    Anje Spijkerboer
    Barbara J. M. Mulder
    The International Journal of Cardiovascular Imaging, 2005, 21 : 293 - 294
  • [36] Cardiac imaging in the digital era: how can the technicians help us further
    Groenink, M
    Spijkerboer, A
    Mulder, B
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2005, 21 (2-3): : 293 - 294
  • [37] Can machine learning improve mortality prediction following cardiac surgery?
    Benedetto, Umberto
    Sinha, Shubhra
    Lyon, Matt
    Dimagli, Arnaldo
    Gaunt, Tom R.
    Angelini, Gianni
    Sterne, Jonathan
    EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2020, 58 (06) : 1130 - 1136
  • [38] A machine learning model to improve identification of druginduced abnormalities in cardiac repolarisation
    Subbiah, Uma
    Rodriguez, Blanca
    Passini, Elisa
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2022, 117
  • [39] Can machine learning improve patient selection for cardiac resynchronization therapy?
    Hu, Szu-Yeu
    Santus, Enrico
    Forsyth, Alexander W.
    Malhotra, Devvrat
    Haimson, Josh
    Chatterjee, Neal A.
    Kramer, Daniel B.
    Barzilay, Regina
    Tulsky, James A.
    Lindvall, Charlotta
    PLOS ONE, 2019, 14 (10):
  • [40] Learning through creativity: how creativity can help machine learning achieving deeper understanding
    Moruzzi, Caterina
    RIVISTA ITALIANA DI FILOSOFIA DEL LINGUAGGIO, 2020, 14 (02): : 35 - 46