Tailoring the surface energy balance algorithm for land-improved (SEBALI) model using high-resolution land/use land cover for monitoring actual evapotranspiration

被引:0
|
作者
Mekonnen, Yilkal Gebeyehu [1 ,3 ]
Alamirew, Tena [2 ,6 ]
Malede, Demelash Ademe [3 ]
Pareeth, Sajid [4 ]
Bantider, Amare [5 ,6 ]
Chukalla, Abebe Demissie [4 ]
机构
[1] Addis Ababa Univ, Africa Ctr Excellence Water Management, Hydrol & Water Resources Management, Addis Ababa, Ethiopia
[2] Addis Ababa Univ, Ethiopian Inst Water Resources, Addis Ababa, Ethiopia
[3] Debre Markos Univ, Dept Nat Resource Management, Debre Markos, Ethiopia
[4] IHE Delft Inst Water Educ, Dept Land & Water Management, NL-2611 AX Delft, Netherlands
[5] Addis Ababa Univ, Coll Dev Studies, Addis Ababa, Ethiopia
[6] Water & Land Resource Ctr, Addis Ababa, Ethiopia
关键词
Google Earth Engine; !text type='Python']Python[!/text; Remote Sensing; SEBALIGEEpy; WATER MANAGEMENT; COMPLEX; SCALE; MODIS;
D O I
10.1016/j.agwat.2024.109058
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Access to accurate near real-time actual evapotranspiration (ETa) data is crucial for monitoring and planning water uses, contributing to the sustainable management and development of water resources. However, ongoing ETa modeling efforts need to be improved when applied to small-sized farmlands in rugged landscapes like in the upper Blue Nile Basin. This study aimed to customize the Google Earth Engine-based Surface Energy Balance for the Algorithm Land-Improved (SEBALIGEE) model using high-resolution land use and land cover data. Additionally, the model, originally based on JavaScript, was updated to Python (SEBALIGEEpy), thereby enhancing its accessibility to a broader range of users and modelers. The ETa simulated with an updated version of the model was validated over croplands using publicly available AmeriFlux eddy covariance data. Furthermore, the SEBALIGEEpy-based ETa was evaluated over the Koga smallholder irrigation scheme in the Upper Blue Nile Basin, Ethiopia, by comparing it with the ETa obtained from the remote sensing-based Water Productivity Open-Access Portal (WaPOR) over seven seasons (2015/16-2022/23). The validation results show that the updated model provides more accurate ETa estimates with fewer missing records, with 9-11 % using the updated model compared to 14-29 % using the original SEBALIGEE model. The customized model has the potential to be used for agricultural water management in areas with fragmented land parcels like the Upper Blue Nile basin and beyond.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Modelling of evapotranspiration using land surface energy balance and thermal infrared remote sensing
    R. P. Singh
    S. Paramanik
    B. K. Bhattacharya
    Mukunda D. Behera
    Tropical Ecology, 2020, 61 : 42 - 50
  • [32] Modelling of evapotranspiration using land surface energy balance and thermal infrared remote sensing
    Singh, R. P.
    Paramanik, S.
    Bhattacharya, B. K.
    Behera, Mukunda D.
    TROPICAL ECOLOGY, 2020, 61 (01) : 42 - 50
  • [33] ESTIMATION OF EVAPOTRANSPIRATION BASED ON SURFACE ENERGY BALANCE ALGORITHM FOR LAND (SEBAL) USING LANDSAT 8 AND MODIS IMAGES
    Nouri, H.
    Faramarzi, M.
    Sobhani, B.
    Sadeghi, S. H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2017, 15 (04): : 1971 - 1982
  • [34] EXPLORING VERY HIGH-RESOLUTION REMOTE SENSING FOR ASSESSING LAND SURFACE TEMPERATURE OF DIFFERENT URBAN LAND COVER PATTERNS
    Asmaryan, Sh.
    Muradyan, V.
    Medvedev, A.
    Avetisyan, R.
    Hovsepyan, A.
    Khlghatyan, A.
    Ayvazyan, G.
    Dell'Acqua, F.
    GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 1847 - 1852
  • [35] MAPPING SPATIAL ACCURACY OF FOREST TYPE CLASSIFICATION IN JAXA's HIGH-RESOLUTION LAND USE AND LAND COVER MAP
    Tsutsumida, N.
    Nagai, S.
    Rodriguez-Veiga, P.
    Katagi, J.
    Nasahara, K.
    Tadono, T.
    ISPRS TECHNICAL COMMISSION III WG III/2, 10 JOINT WORKSHOP MULTIDISCIPLINARY REMOTE SENSING FOR ENVIRONMENTAL MONITORING, 2019, 4-3 (W1): : 57 - 63
  • [36] Generating high-resolution land use and land cover maps for the greater Mariño watershed in 2019 with machine learning
    Vallet, Ameline
    Dupuy, Stephane
    Verlynde, Matthieu
    Gaetano, Raffaele
    SCIENTIFIC DATA, 2024, 11 (01)
  • [37] Vegetation Land Use/Land Cover Extraction From High-Resolution Satellite Images Based on Adaptive Context Inference
    Zhan, Zongqian
    Zhang, Xiaomeng
    Liu, Yi
    Sun, Xiao
    Pang, Chao
    Zhao, Chenbo
    IEEE ACCESS, 2020, 8 : 21036 - 21051
  • [38] Evaluation of High-Resolution Land Cover Geographical Data for the WRF Model Simulations
    Siewert, Jolanta
    Kroszczynski, Krzysztof
    REMOTE SENSING, 2023, 15 (09)
  • [39] Land use/land cover mapping using multi-scale texture processing of high resolution data
    Wong, S. N.
    Sarker, M. L. R.
    8TH INTERNATIONAL SYMPOSIUM OF THE DIGITAL EARTH (ISDE8), 2014, 18
  • [40] GLOBAL SEMANTIC LAND USE/LAND COVER BASED ON HIGH RESOLUTION SATELLITE IMAGERY USING ENSEMBLE NETWORKS
    Tapper, Gustav
    Sundelius, Carl
    Haglund, Leif
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1070 - 1073