Lignin-Based Conductive Hydrogels with Plasticity, Recyclability, and Self-Adhesion as Flexible Strain Sensors for Human Motion Monitoring

被引:3
|
作者
Ren, Kunyun [1 ]
Shi, Yongdong [1 ]
Wen, Chaoyao [1 ]
Kang, Xinchang [1 ]
Tian, Yu [1 ]
Guan, Youjun [1 ]
Ning, Chengyun [2 ,3 ]
Yang, Xuebin [5 ]
Zhou, Lei [4 ]
Fu, Rumin [2 ,3 ]
Tan, Guoxin [1 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510006, Peoples R China
[3] South China Univ Technol, Natl Engn Res Ctr Tissue Restorat & Reconstruct, Guangzhou 510006, Peoples R China
[4] Guangzhou Med Univ, Affiliated Hosp 3, Dept Spine Surg, Guangzhou Key Lab Spine Dis Prevent & Treatment, Guangzhou 510150, Peoples R China
[5] Univ Leeds, St Jamess Univ Hosp, Sch Dent, Leeds LS9 7TF, England
来源
ACS APPLIED POLYMER MATERIALS | 2024年 / 6卷 / 09期
基金
中国国家自然科学基金;
关键词
plasticity; recyclability; lignin; conductive hydrogel; flexible sensor;
D O I
10.1021/acsapm.4c00503
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conductive hydrogels possessing conductivity, flexibility, and biocompatibility have garnered considerable attention in recent years for their applications in flexible wearable devices. However, most reported conductive hydrogels are mainly elastic hydrogel substrates with chemically cross-linked networks, poor shape adaptability, and irreversible electromechanical properties after molding, thereby limiting their prospective utility in flexible electronics. In this study, we fabricate multifunctional lignin-gelatin-polypyrrole (LGP) hydrogels with plasticity, recyclability, strong adhesion, and biocompatibility via a straightforward methodology employing gelatin, polypyrrole, and sodium lignosulfonate. The resultant LGP hydrogel is interlinked by dynamic noncovalent bonds, yielding remarkable plasticity and recyclability, and could be manipulated by hand to fashion diverse shapes. Additionally, the LGP hydrogel displays substantial adhesion (23.88 kPa to pig skin) and maintains strong adhesion to wide substrates. The LGP hydrogel strain sensor demonstrates high sensitivity (GF = 6.08) and rapid response (107 ms), providing a stable resistive signal output for both large (25-200%) and small (1-5%) strains across diverse operating conditions. Moreover, the LGP hydrogel can be seamlessly integrated as a flexible, wearable strain sensor to facilitate real-time monitoring of human physiological activities.
引用
收藏
页码:5297 / 5307
页数:11
相关论文
共 50 条
  • [21] Highly sensitive flexible strain sensor based on microstructured biphasic hydrogels for human motion monitoring
    Gao, Xin
    Wang, Xinyu
    Fan, Xingce
    FRONTIERS OF MATERIALS SCIENCE, 2023, 17 (04)
  • [22] Highly sensitive flexible strain sensor based on microstructured biphasic hydrogels for human motion monitoring
    Xin Gao
    Xinyu Wang
    Xingce Fan
    Frontiers of Materials Science, 2023, 17
  • [23] Mussel-Inspired Flexible, Wearable, and Self-Adhesive Conductive Hydrogels for Strain Sensors
    Lv, Rui
    Bei, Zhongwu
    Huang, Yuan
    Chen, Yangwei
    Zheng, Zhiqiang
    You, Qingliang
    Zhu, Chao
    Cao, Yiping
    MACROMOLECULAR RAPID COMMUNICATIONS, 2020, 41 (02)
  • [24] Self-repairing flexible strain sensors based on nanocomposite hydrogels for whole-body monitoring
    Zhou, Hongwei
    Jin, Zhaoyang
    Yuan, Ying
    Zhang, Gai
    Zhao, Weifeng
    Jin, Xilang
    Ma, Aijie
    Liu, Hanbin
    Chen, Weixing
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 592
  • [25] Research progress of superhydrophobic flexible strain sensors in human motion monitoring
    Luo L.
    Lin X.
    Jiang J.
    Ying N.
    Zeng D.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (07): : 3837 - 3851
  • [26] Self-Healing Hydrogels as Flexible Sensor for Human Motion Monitoring
    Tang, Huicheng
    Kang, Beibei
    Li, Yueyun
    Zhao, Zengdian
    Song, Shasha
    CHEMISTRYSELECT, 2021, 6 (40): : 11130 - 11136
  • [27] Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion
    Xia, Shan
    Song, Shixin
    Gao, Guanghui
    CHEMICAL ENGINEERING JOURNAL, 2018, 354 : 817 - 824
  • [28] CNC-mediated functionalized MWCNT-reinforced double-network conductive hydrogels as smart, flexible strain and epidermic sensors for human motion monitoring
    Hassan, Hamna
    Khan, Mansoor
    Shah, Luqman Ali
    Yoo, Hyeong-Min
    JOURNAL OF MATERIALS CHEMISTRY B, 2025,
  • [29] Bio-inspired adhesive and self-healing hydrogels as flexible strain sensors for monitoring human activities
    Gao, Zijian
    Li, Yifan
    Shang, Xiaoling
    Hu, Wei
    Gao, Guanghui
    Duan, Lijie
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 106
  • [30] Dual-Sensing, Stretchable, Fatigue-Resistant, Adhesive, and Conductive Hydrogels Used as Flexible Sensors for Human Motion Monitoring
    Kang, Beibei
    Yan, Xiangrui
    Zhao, Zengdian
    Song, Shasha
    LANGMUIR, 2022, 38 (22) : 7013 - 7023