Invariant scalar-flat Kähler metrics on line bundles over generalized flag varieties

被引:0
|
作者
Yao, Qi [1 ]
机构
[1] SUNY Stony Brook, Math Dept, 100 Nicolls Rd, Stony Brook, NY 11794 USA
关键词
Canonical metrics; Calabi ansatz; invariant scalar-flat K & auml; hler metrics; asymptotically conical K & auml; EINSTEIN-METRICS; KAHLER-METRICS; CONSTRUCTION; DEFORMATION; MANIFOLDS; EXAMPLES; SPACE;
D O I
10.4153/S0008414X24000464
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected semisimple compact Lie group, let X be a simply connected compact K & auml;hler manifold homogeneous under G, and let L be a negative holomorphic line bundle over X. We prove that all G-invariant K & auml;hler metrics on the total space of L arise from the Calabi ansatz. Using this, we show that there exists a unique G-invariant scalar-flat K & auml;hler metric in each G-invariant K & auml;hler class of L. The G-invariant scalar-flat K & auml;hler metrics are automatically asymptotically conical.
引用
收藏
页数:26
相关论文
共 28 条