FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective

被引:0
|
作者
Yi, Kun [1 ]
Zhang, Qi [2 ]
Fan, Wei [3 ]
He, Hui [1 ]
Hu, Liang [2 ]
Wang, Pengyang [4 ]
An, Ning [5 ]
Cao, Longbing [6 ]
Niu, Zhendong [1 ]
机构
[1] Beijing Inst Technol, Beijing, Peoples R China
[2] Tongji Univ, Shanghai, Peoples R China
[3] Univ Oxford, Oxford, England
[4] Univ Macau, Taipa, Macao, Peoples R China
[5] HeFei Univ Technol, Hefei, Peoples R China
[6] Macquarie Univ, N Ryde, NSW, Australia
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate time series (MTS) forecasting has shown great importance in numerous industries. Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively. However, the uncertain compatibility of the two networks puts an extra burden on handcrafted model designs. Moreover, the separate spatial and temporal modeling naturally violates the unified spatiotemporal inter-dependencies in real world, which largely hinders the forecasting performance. To overcome these problems, we explore an interesting direction of directly applying graph networks and rethink MTS forecasting from a pure graph perspective. We first define a novel data structure, hypervariate graph, which regards each series value (regardless of variates or timestamps) as a graph node, and represents sliding windows as space-time fully-connected graphs. This perspective considers spatiotemporal dynamics unitedly and reformulates classic MTS forecasting into the predictions on hypervariate graphs. Then, we propose a novel architecture Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space. FourierGNN accommodates adequate expressiveness and achieves much lower complexity, which can effectively and efficiently accomplish the forecasting. Besides, our theoretical analysis reveals FGO's equivalence to graph convolutions in the time domain, which further verifies the validity of FourierGNN. Extensive experiments on seven datasets have demonstrated our superior performance with higher efficiency and fewer parameters compared with state-of-the-art methods. Code is available at this repository: https://github.com/aikunyi/FourierGNN.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Graph Construction Method for GNN-Based Multivariate Time-Series Forecasting
    Chung, Wonyong
    Moon, Jaeuk
    Kim, Dongjun
    Hwang, Eenjun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5817 - 5836
  • [32] Multi-channel fusion graph neural network for multivariate time series forecasting
    Chen, Yanzhe
    Xie, Zongxia
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 64
  • [33] MTHetGNN: A heterogeneous graph emb e dding framework for multivariate time series forecasting
    Wang, Yueyang
    Duan, Ziheng
    Huang, Yida
    Xu, Haoyan
    Feng, Jie
    Ren, Anni
    PATTERN RECOGNITION LETTERS, 2022, 153 : 151 - 158
  • [34] Knowledge Graph Guided Simultaneous Forecasting and Network Learning for Multivariate Financial Time Series
    Ibrahim, Shibal
    Chen, Wenyu
    Zhu, Yada
    Chen, Pin-Yu
    Zhang, Yang
    Mazumder, Rahul
    3RD ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2022, 2022, : 480 - 488
  • [35] WaveForM: Graph Enhanced Wavelet Learning for Long Sequence Forecasting of Multivariate Time Series
    Yang, Fuhao
    Li, Xin
    Wang, Min
    Zang, Hongyu
    Pang, Wei
    Wang, Mingzhong
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 10754 - 10761
  • [36] Representing Multiview Time-Series Graph Structures for Multivariate Long-Term Time-Series Forecasting
    Wang Z.
    Fan J.
    Wu H.
    Sun D.
    Wu J.
    IEEE Transactions on Artificial Intelligence, 5 (06): : 2651 - 2662
  • [37] Forecasting Multivariate Time Series with the Theta Method
    Thomakos, Dimitrios D.
    Nikolopoulos, Konstantinos
    JOURNAL OF FORECASTING, 2015, 34 (03) : 220 - 229
  • [38] Online Adaptive Multivariate Time Series Forecasting
    Saadallah, Amal
    Mykula, Hanna
    Morik, Katharina
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT VI, 2023, 13718 : 19 - 35
  • [39] On multivariate fuzzy time series analysis and forecasting
    Wu, B
    Hsu, YY
    SOFT METHODS IN PROBABILITY, STATISTICS AND DATA ANALYSIS, 2002, : 363 - 372
  • [40] Nearest Neighbor Multivariate Time Series Forecasting
    Zhang, Huiliang
    Nie, Ping
    Sun, Lijun
    Boulet, Benoit
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,