Attention-based scale sequence network for small object detection

被引:2
|
作者
Lee, Young-Woon [1 ]
Kim, Byung-Gyu [2 ]
机构
[1] Sunmoon Univ, Dept Comp Engn, Asan, South Korea
[2] Sookmyung Womens Univ, Div Artificial Intelligence Engn, Seoul, South Korea
关键词
Small object detection; Feature pyramid network; Scale sequence; Attention mechanism; Deep learning;
D O I
10.1016/j.heliyon.2024.e32931
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, with the remarkable development of deep learning technology, achievements are being updated in various computer vision fields. In particular, the object recognition field is receiving the most attention. Nevertheless, recognition performance for small objects is still challenging. Its performance is of utmost importance in realistic applications such as searching for missing persons through aerial photography. The core structure of the object recognition neural network is the feature pyramid network (FPN). You Only Look Once (YOLO) is the most widely used representative model following this structure. In this study, we proposed an attention-based scale sequence network (ASSN) that improves the scale sequence feature pyramid network (ssFPN), enhancing the performance of the FPN-based detector for small objects. ASSN is a lightweight attention module optimized for FPN-based detectors and has the versatility to be applied to any model with a corresponding structure. The proposed ASSN demonstrated performance improvements compared to the baselines (YOLOv7 and YOLOv8) in average precision (AP) of up to 0.6%. Additionally, the AP for small objects (AP(s)) showed also improvements of up to 1.9%. Furthermore, ASSN exhibits higher performance than ssFPN while achieving lightweightness and optimization, thereby improving computational complexity and processing speed. ASSN is open-source based on YOLO version 7 and 8. This can be found in our public repository: https://github.com/smu-ivpl/ASSN.git
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Detection and Positioning of Keypoints in Small-scale Photovoltaic System Based on Object Detection Network and Aerial Sequence Images
    Qi, Fengyang
    Liang, Siming
    Cao, Rui
    Ding, Yifan
    Yang, Qiang
    Yan, Wenjun
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4795 - 4800
  • [22] ACANet: attention-based context-aware network for infrared small target detection
    Ling, Siyao
    Chen, Lunfeng
    Wu, Yujie
    Zhang, Yuanmin
    Gao, Zhisheng
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (12): : 17068 - 17096
  • [23] An Attention-Based Network for Textured Surface Anomaly Detection
    Liu, Gaokai
    Yang, Ning
    Guo, Lei
    APPLIED SCIENCES-BASEL, 2020, 10 (18):
  • [24] Remote Sensing Small Object Detection Network Based on Attention Mechanism and Multi-Scale Feature Fusion
    Qu, Junsuo
    Tang, Zongbing
    Zhang, Le
    Zhang, Yanghai
    Zhang, Zhenguo
    REMOTE SENSING, 2023, 15 (11)
  • [25] Attention-based Deep Learning for Network Intrusion Detection
    Guo, Naiwang
    Tian, Yingjie
    Li, Fan
    Yang, Hongshan
    2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584
  • [26] ADSAD: An unsupervised attention-based discrete sequence anomaly detection framework for network security analysis
    Qin, Zhi-Quan
    Ma, Xing-Kong
    Wang, Yong-Jun
    COMPUTERS & SECURITY, 2020, 99
  • [27] Attention-based efficient robot grasp detection network
    Qin, Xiaofei
    Hu, Wenkai
    Xiao, Chen
    He, Changxiang
    Pei, Songwen
    Zhang, Xuedian
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2023, 24 (10) : 1430 - 1444
  • [28] Attention-based Neural Network for Traffic Sign Detection
    Zhang, Jing
    Hui, Le
    Lu, Jianfeng
    Zhu, Yuhua
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1839 - 1844
  • [29] Lightweight small object detection network with attention mechanism
    Zhu W.
    Wang L.
    Jin Z.
    He D.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (08): : 998 - 1010
  • [30] Small object detection based on hierarchical attention mechanism and multi-scale separable detection
    Zhang, Yafeng
    Yu, Junyang
    Wang, Yuanyuan
    Tang, Shuang
    Li, Han
    Xin, Zhiyi
    Wang, Chaoyi
    Zhao, Ziming
    IET IMAGE PROCESSING, 2023, 17 (14) : 3986 - 3999