Prediction of Drilling Efficiency for Rotary Drilling Rig Based on an Improved Back Propagation Neural Network Algorithm

被引:0
|
作者
Jia, Cunde [1 ,2 ,3 ,4 ]
Zhang, Junyong [1 ,2 ,3 ]
Kong, Xiangdong [1 ,2 ,3 ]
Xu, Hongyu [4 ]
Jiang, Wenguang [1 ,2 ,3 ]
Li, Shengbin [1 ,2 ,3 ]
Jiang, Yunhong [5 ]
Ai, Chao [1 ,2 ,3 ]
机构
[1] Yanshan Univ, State Key Lab Crane Technol, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Sch Mech Engn, Qinhuangdao 066004, Peoples R China
[3] Hebei Prov Key Lab Heavy Machinery Fluid Power Tra, Qinhuangdao 066004, Peoples R China
[4] Beijing Sany Intelligent Mfg Technol Co Ltd, Beijing 100005, Peoples R China
[5] Northumbria Univ, Dept Appl Sci, Newcastle NE1 8ST, England
基金
中国国家自然科学基金;
关键词
BP neural network; drilling efficiency; drilling system; genetic algorithm; particle swarm optimization; prediction model; OPTIMIZATION; DESIGN;
D O I
10.3390/machines12070438
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurately predicting the drilling efficiency of rotary drilling is the key to achieving intelligent construction. The current types of principle analysis (based on traditional interactive experimental methods) and efficiency prediction (based on simulation models) cannot meet the requirements needed for the efficient, real-time, and accurate drilling efficiency predictions of rotary drilling rigs. Therefore, we adopted a method based on machine learning to predict drilling efficiency. The extremely complex rock fragmentation process in drilling conditions also brings challenges to predicting drilling efficiency. Therefore, this article went through a combination of mechanism and data analysis to conduct correlation analysis and to clarify the drilling characteristic parameters that are highly correlated with drilling efficiency, and it then used them as inputs for machine learning models. We propose a rotary drilling rig drilling efficiency prediction model based on the GA-BP neural network to construct an accurate and efficient drilling efficiency prediction model. Compared with traditional BP neural networks, it utilizes the global optimization ability of a genetic algorithm to obtain the initial weights and thresholds of a BP neural network in order to avoid the defect of ordinary BP neural networks, i.e., that they easily fall into local optimal solutions during the training process. The average prediction accuracy of the GA-BP neural network is 93.6%, which is 3.1% higher than the traditional BP neural network.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Prediction of crack width of drilling fluid leakage based on neural network
    Wang J.
    Xu J.
    Zhao M.
    Wang B.
    Wang Y.
    Chen J.
    Wang X.
    Yang G.
    Ma T.
    Meitiandizhi Yu Kantan/Coal Geology and Exploration, 2023, 51 (09): : 81 - 88
  • [22] Prediction of loom efficiency based on BP neural network and its improved algorithm
    Zhang X.
    Liu F.
    Mai W.
    Ma C.
    Fangzhi Xuebao/Journal of Textile Research, 2020, 41 (08): : 121 - 127
  • [23] Acceleration by prediction for error back-propagation algorithm of neural network
    Kanda, Arihiro, 1600, Publ by Scripta Technica Inc, New York, NY, United States (25):
  • [24] Deep Neural Network Prediction of Mechanical Drilling Speed
    Chen, Haodong
    Jin, Yan
    Zhang, Wandong
    Zhang, Junfeng
    Ma, Lei
    Lu, Yunhu
    ENERGIES, 2022, 15 (09)
  • [25] Prediction of Arc Voltage of Electric Arc Furnace Based on Improved Back Propagation Neural Network
    Vinayaka K.U.
    Puttaswamy P.S.
    SN Computer Science, 2021, 2 (3)
  • [26] Gravity anomaly interpolation based on Genetic Algorithm improved Back-Propagation Neural Network
    Zhao Dongming
    Bao Huan
    Wang Qingbin
    Gao Zhan
    SEVENTH INTERNATIONAL SYMPOSIUM ON PRECISION ENGINEERING MEASUREMENTS AND INSTRUMENTATION, 2011, 8321
  • [27] Security Situation Prediction based on Hybrid Rice Optimization Algorithm and Back Propagation Neural Network
    Zhang, Xu
    Ye, Zhiwei
    Yan, Lingyu
    Wang, Chunzhi
    Wang, Ruoxi
    PROCEEDINGS OF THE 2018 IEEE 4TH INTERNATIONAL SYMPOSIUM ON WIRELESS SYSTEMS WITHIN THE INTERNATIONAL CONFERENCES ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS (IDAACS-SWS), 2018, : 73 - 77
  • [28] A Fault Prediction Algorithm Based on Rough Sets and Back Propagation Neural Network for Vehicular Networks
    Geng, Rong
    Wang, Xiaojie
    Ye, Ning
    Liu, Jun
    IEEE ACCESS, 2018, 6 : 74984 - 74992
  • [29] Safety Design of Rotary Drilling Rig Mast Based on Multi-Condition Analysis
    Yang, Heng
    Ren, Yuhang
    Yang, Haorong
    Xu, Gening
    Applied Sciences (Switzerland), 2025, 15 (04):
  • [30] Working pose measurement and quality evaluation of rotary drilling rig based on laser tracker
    Lu, Xinghua
    Jiang, Tao
    OPTIK, 2019, 187 : 311 - 317