SHARP WEIGHTED HOLDER MEAN BOUNDS FOR SEIFFERT'S MEANS

被引:0
|
作者
Zhao, Tie-Hong [1 ]
Wang, Miao-Kun [2 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[2] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Seiffert's means; weighted power mean; monotonicity; inequality; TANGENT; TERMS; SINE; INEQUALITIES;
D O I
10.7153/mia-2024-27-24
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P(a, b) and T(a, b) be the first and second Seiffert's means for two positive numbers a and b , in this paper, for any fixed p is an element of R , we present the optimal parameters alpha(p), beta(p), lambda(p), mu(p) is an element of [0, 1] such that the inequalities H-p(a, b; alpha(p)) <= P(a, b) H-p(a, b; beta(p)), H-p(a, b; lambda(p)) <= T(a, b) H-p(a, b; mu(p)) hold true for all a, b > 0, where H-p(a, b; omega) is the weighted p-order Holder (power) mean with the weight omega is an element of [0, 1]. As applications, various sharp inequalities for P(a, b) and T(a, b), including the sharp power mean bounds, will be established.
引用
收藏
页码:327 / 345
页数:19
相关论文
共 50 条
  • [41] Optimal bounds for two Seiffert-like means by arithmetic mean and harmonic mean
    Zhu, Ling
    Malesevic, Branko
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [42] Sharp power mean bounds for two Sándor–Yang means
    Xiao-Hong He
    Wei-Mao Qian
    Hui-Zuo Xu
    Yu-Ming Chu
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2627 - 2638
  • [43] Sharp bounds for Heinz mean by Heron mean and other means
    Zhu, Ling
    [J]. AIMS MATHEMATICS, 2020, 5 (01): : 723 - 731
  • [44] Optimal Lehmer Mean Bounds for the Geometric and Arithmetic Combinations of Arithmetic and Seiffert Means
    Chu, Y. -M.
    Wang, M. -K.
    Qiu, Y. -F.
    [J]. AZERBAIJAN JOURNAL OF MATHEMATICS, 2012, 2 (01): : 3 - 9
  • [45] OPTIMAL BOUNDS OF THE ARITHMETIC MEAN IN TERMS OF NEW SEIFFERT-LIKE MEANS
    Nowicka, Monika
    Witkowski, Alfred
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01): : 383 - 392
  • [46] SHARP LEHMER MEAN BOUNDS FOR NEUMAN MEANS WITH APPLICATIONS
    Chu, Yu-Ming
    Qian, Wei-Mao
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 583 - 596
  • [47] Sharp power mean bounds for the lemniscate type means
    Tie-Hong Zhao
    Zhong-Hua Shen
    Yu-Ming Chu
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [48] Sharp power mean bounds for the lemniscate type means
    Zhao, Tie-Hong
    Shen, Zhong-Hua
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (04)
  • [49] Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means
    Wei-Mao Qian
    Yu-Ming Chu
    Xiao-Hui Zhang
    [J]. Journal of Inequalities and Applications, 2015
  • [50] Two sharp double inequalities for Seiffert mean
    Yu-Ming Chu
    Miao-Kun Wang
    Wei-Ming Gong
    [J]. Journal of Inequalities and Applications, 2011