Single-Atom Catalysts Based on the Mo2CO2 MXene for CO Oxidation

被引:0
|
作者
Gouveia, Jose D. [1 ]
Gomes, Jose R. B. [1 ]
机构
[1] Univ Aveiro, Aveiro Inst Mat, Dept Chem, CICECO, Campus Univ Santiago, P-3810193 Aveiro, Portugal
关键词
carbon monoxide oxidation; catalysis; density functional theory; MXenes; FINDING SADDLE-POINTS; ELASTIC BAND METHOD;
D O I
10.1002/adts.202400342
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Through density functional theory calculations, the mechanism of CO oxidation to CO2 on single-atom catalysts consisting of an atom of Ti, Fe, or Zn deposited on the surface of the Mo2CO2 MXene is investigated. In the case of Fe@Mo2CO2, a mechanism resembling that of Termolecular Langmuir-Hinshelwood (TLH) is thermodynamically and kinetically favored, displaying very exothermic CO2 formation, low activation energies, and easy CO2 desorption. On Ti@Mo2CO2, the dissociation of CO2 is almost barrierless and much more likely to occur than CO2 desorption, barring the usage of this surface as a catalyst for CO oxidation. Finally, on Zn@Mo2CO2, a hybrid Langmuir-Hinshelwood/Eley-Rideal (LH/ER) mechanism is thermodynamically and kinetically feasible. Here, after the first CO2 forms, with an energy barrier of only 0.62 eV, the second CO2 is formed spontaneously, and the Zn-CO2 interactions are weak enough to allow desorption. The calculated thermodynamic quantities and reaction rates at T = 300 K indicate that Fe@Mo2CO2 should be quite active toward CO oxidation, followed by Zn@Mo2CO2, while the Ti-based model is inactive. The results add to the evidence that establishes single transition metal atoms adsorbed on MXene surfaces as cheap and easily obtainable catalysts that offer the best of both bare and functionalized MXenes.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Heterogeneous Single-Atom Catalysts for Electrochemical CO2Reduction Reaction
    Li, Minhan
    Wang, Haifeng
    Luo, Wei
    Sherrell, Peter C.
    Chen, Jun
    Yang, Jianping
    ADVANCED MATERIALS, 2020, 32 (34)
  • [42] Electrochemical CO2 reduction of graphene single-atom/cluster catalysts
    Gao, Yongze
    Zhao, Mengdie
    Jiang, Liyun
    Yu, Qi
    MOLECULAR CATALYSIS, 2024, 562
  • [43] Single-Atom Catalysts on Covalent Organic Frameworks for CO2 Reduction
    Wang, Rui
    Yuan, Yufei
    Bang, Ki-Taek
    Kim, Yoonseob
    ACS MATERIALS AU, 2023, 3 (01): : 28 - 36
  • [44] Single-Atom Catalysts-Enabled Reductive Upgrading of CO2
    Tan, Xiang
    Li, Hu
    Yang, Song
    CHEMCATCHEM, 2021, 13 (23) : 4859 - 4877
  • [45] CO2 reduction on single-atom Ir catalysts with chemical functionalization
    Lin, Zheng-Zhe
    Li, Xi-Mei
    Chen, Xin-Wei
    Chen, Xi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (06) : 3733 - 3740
  • [46] Recent Advances on Single-Atom Catalysts for Photocatalytic CO2 Reduction
    Shang, Ziang
    Feng, Xueting
    Chen, Guanzhen
    Qin, Rong
    Han, Yunhu
    SMALL, 2023, 19 (48)
  • [47] Multiscale porous single-atom Co catalysts for epoxidation with O2
    Chen, Xiao
    Zou, Yong
    Zhang, Mingkai
    Gou, Wangyan
    Zhang, Sai
    Qu, Yongquan
    Journal of Materials Chemistry A, 2021, 10 (11) : 6016 - 6022
  • [48] Theoretical studies of MXene-supported single-atom catalysts: Os1/Ti2CS2 for low-temperature CO oxidation
    Meng, Yang
    Liang, Jin-Xia
    Zhu, Chun
    Xu, Cong-Qiao
    Li, Jun
    SCIENCE CHINA-MATERIALS, 2022, 65 (05) : 1303 - 1312
  • [49] Identifying single-atom catalysts for CO oxidation from density functional theory
    Kropp, Thomas
    Rebarchik, Michael
    Mavrikakis, Manos
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [50] Theoretical insight into the single-atom catalytic mechanism of CeO2-supported Ag catalysts in CO oxidation
    Shen, Yongli
    Yin, Kangjuan
    Xiao, Zihui
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (36) : 20346 - 20353