Domain adaptation model for retinopathy detection from cross-domain OCT images

被引:0
|
作者
Wang, Jing [1 ,2 ]
Chen, Yiwei [2 ]
Li, Wanyue [1 ,2 ]
Kong, Wen [1 ,2 ]
He, Yi [2 ]
Jiang, Chuihui [3 ]
Shi, Guohua [2 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Jiangsu Key Lab Med Opt, Suzhou Inst Biomed Engn & Technol, Suzhou 215263, Peoples R China
[3] Fudan Univ, Dept Ophthalmol & Vis Sci, Eye & ENT Hosp, Shanghai 200031, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China
关键词
domain adaptation; adversarial learning; OCT images; retinopathy detection; OPTICAL COHERENCE TOMOGRAPHY; SEGMENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A deep neural network (DNN) can assist in retinopathy screening by automatically classifying patients into normal and abnormal categories according to optical coherence tomography (OCT) images. Typically, OCT images captured from different devices show heterogeneous appearances because of different scan settings; thus, the DNN model trained from one domain may fail if applied directly to a new domain. As data labels are difficult to acquire, we proposed a generative adversarial network-based domain adaptation model to address the cross-domain OCT images classification task, which can extract invariant and discriminative characteristics shared by different domains without incurring additional labeling cost. A feature generator, a Wasserstein distance estimator, a domain discriminator, and a classifier were included in the model to enforce the extraction of domain invariant representations. We applied the model to OCT images as well as public digit images. Results show that the model can significantly improve the classification accuracy of cross-domain images.
引用
收藏
页码:795 / 810
页数:16
相关论文
共 50 条
  • [21] Learning Cross-Domain Landmarks for Heterogeneous Domain Adaptation
    Tsai, Yao-Hung Hubert
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5081 - 5090
  • [22] Local Domain Adaptation for Cross-Domain Activity Recognition
    Zhao, Jiachen
    Deng, Fang
    He, Haibo
    Chen, Jie
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2021, 51 (01) : 12 - 21
  • [23] Cross-domain feature enhancement for unsupervised domain adaptation
    Long Sifan
    Wang Shengsheng
    Zhao Xin
    Fu Zihao
    Wang Bilin
    Applied Intelligence, 2022, 52 : 17326 - 17340
  • [24] Cross-Domain Error Minimization for Unsupervised Domain Adaptation
    Du, Yuntao
    Chen, Yinghao
    Cui, Fengli
    Zhang, Xiaowen
    Wang, Chongjun
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT II, 2021, 12682 : 429 - 448
  • [25] Unsupervised Domain Adaptation with Imbalanced Cross-Domain Data
    Hsu, Tzu-Ming Harry
    Chen, Wei-Yu
    Hou, Cheng-An
    Tsai, Yao-Hung Hubert
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4121 - 4129
  • [26] Joint Cross-Domain Preserving and Distribution Adaptation for Heterogeneous Domain Adaptation
    Lekshmi, R.
    Sanodiya, Rakesh Kumar
    Jose, Babita Roslind
    Mathew, Jimson
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [27] Improving Cross-Domain Semi-Supervised Object Detection with Adversarial Domain Adaptation
    Menke, Maximilian
    Wenzel, Thomas
    Schwung, Andreas
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [28] An End-to-end Supervised Domain Adaptation Framework for Cross-Domain Change Detection
    Liu, Jia
    Xuan, Wenjie
    Gan, Yuhang
    Zhan, Yibing
    Liu, Juhua
    Du, Bo
    PATTERN RECOGNITION, 2022, 132
  • [29] Unsupervised domain adaptation alignment method for cross-domain semantic segmentation of remote sensing images
    Shen Z.
    Ni H.
    Guan H.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (12): : 1 - 2
  • [30] Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation
    Inoue, Naoto
    Furuta, Ryosuke
    Yamasaki, Toshihiko
    Aizawa, Kiyoharu
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5001 - 5009