Direct visualization of laser-driven dynamic fragmentation in tin by in situ x-ray diffraction

被引:0
|
作者
Yang, Jing [1 ]
Wang, Xinxin [2 ]
Xu, Liang [1 ]
Wang, Qiannan [1 ]
Sun, Yi [1 ]
Li, Jiangtao [1 ]
Zhang, Lin [1 ]
Li, Yinghua [1 ]
Yu, Yuying [1 ]
Wang, Pei [2 ]
Wu, Qiang [1 ]
Hu, Jianbo [1 ]
机构
[1] China Acad Engn Phys, Inst Fluid Phys, Lab Shock Wave & Detonat Phys, Mianyang 621900, Peoples R China
[2] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
EQUATION-OF-STATE; FREE-SURFACE; SHOCK-WAVE; FRACTURE; ALUMINUM; EJECTION;
D O I
10.1063/5.0200242
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a novel method for investigating laser-driven dynamic fragmentation in tin using in situ X-ray diffraction. Our experimental results demonstrate the feasibility of the method for simultaneously identifying the phase and temperature of fragments through analysis of the diffraction pattern. Surprisingly, we observe a deviation from the widely accepted isentropic release assumption, with the temperature of the fragments being found to be more than 100 K higher than expected, owing to the release of plastic work during dynamic fragmentation. Our findings are further verified through extensive large-scale molecular dynamics simulations, in which strain energies are found to be transferred into thermal energies during the nucleation and growth of voids, leading to an increase in temperature. Our findings thus provide crucial insights into the impact-driven dynamic fragmentation phenomenon and reveal the significant influence of plastic work on material response during shock release. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(https://creativecommons.org/licenses/by/4.0/).
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [41] Normalization schemes for ultrafast x-ray diffraction using a table-top laser-driven plasma source
    Schick, D.
    Bojahr, A.
    Herzog, M.
    Schmising, C. von Korff
    Shayduk, R.
    Leitenberger, W.
    Gaa, P.
    Bargheer, M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (02):
  • [42] Pulsed laser deposition chamber for in situ X-ray diffraction
    Vonk, V
    Konings, S
    Barthe, L
    Gorges, B
    Graafsma, H
    JOURNAL OF SYNCHROTRON RADIATION, 2005, 12 : 833 - 834
  • [43] Demonstration of a laser-driven, narrow spectral bandwidth x-ray source for collective x-ray scattering experiments
    MacDonald, M. J.
    Saunders, A. M.
    Bachmann, B.
    Bethkenhagen, M.
    Divol, L.
    Doyle, M. D.
    Fletcher, L. B.
    Glenzer, S. H.
    Kraus, D.
    Landen, O. L.
    LeFevre, H. J.
    Klein, S. R.
    Neumayer, P.
    Redmer, R.
    Schorner, M.
    Whiting, N.
    Falcone, R. W.
    Doppner, T.
    PHYSICS OF PLASMAS, 2021, 28 (03)
  • [44] Direct Observations of a Dynamically Driven Phase Transition with in situ X-Ray Diffraction in a Simple Ionic Crystal
    Kalita, Patricia
    Specht, Paul
    Root, Seth
    Sinclair, Nicholas
    Schuman, Adam
    White, Melanie
    Cornelius, Andrew L.
    Smith, Jesse
    Sinogeikin, Stanislav
    PHYSICAL REVIEW LETTERS, 2017, 19 (25)
  • [45] Dynamic fragmentation of boron carbide using laser-driven flyers
    Mallick, Debjoy D.
    Ramesh, K. T.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2020, 136
  • [46] Simulated refraction-enhanced X-ray radiography of laser-driven shocks
    Kar, Arnab
    Boehly, T. R.
    Radha, P. B.
    Edgell, D. H.
    Hu, S. X.
    Nilson, P. M.
    Shvydky, A.
    Theobald, W.
    Cao, D.
    Anderson, K. S.
    Goncharov, V. N.
    Regan, S. P.
    PHYSICS OF PLASMAS, 2019, 26 (03)
  • [47] Application of compact laser-driven accelerator X-ray sources for industrial imaging
    Gruse, J. -N.
    Streeter, M. J. V.
    Thornton, C.
    Armstrong, C. D.
    Baird, C. D.
    Bourgeois, N.
    Cipiccia, S.
    Finlay, O. J.
    Gregory, C. D.
    Katzir, Y.
    Lopes, N. C.
    Mangles, S. P. D.
    Najmudin, Z.
    Neely, D.
    Pickard, L. R.
    Potter, K. D.
    Rajeev, P. P.
    Rusby, D. R.
    Underwood, C. I. D.
    Warnett, J. M.
    Williams, M. A.
    Wood, J. C.
    Murphy, C. D.
    Brenner, C. M.
    Symes, D. R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 983
  • [48] Shielded radiography with a laser-driven MeV-energy X-ray source
    Chen, Shouyuan
    Golovin, Grigory
    Miller, Cameron
    Haden, Daniel
    Banerjee, Sudeep
    Zhang, Ping
    Liu, Cheng
    Zhang, Jun
    Zhao, Baozhen
    Clarke, Shaun
    Pozzi, Sara
    Umstadter, Donald
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2016, 366 : 217 - 223
  • [49] Pile-up corrections in laser-driven pulsed X-ray sources
    G. Hernández
    F. Fernández
    Applied Physics B, 2018, 124
  • [50] Measurement of femtosecond laser-driven X-ray focal spot with repetition frequency
    Wang, Hongjian
    Yang, Qingguo
    Ye, Yan
    Li, Jun
    Meng, Limin
    Yu, Yong
    Wang, Hairong
    Mu, Jian
    Peng, Qixian
    Li, Zeren
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2015, 27 (03):