Influence of Parameters in Vapor Transport Equilibration Treatment on Composition and Homogeneity of LiTaO3 Single Crystals

被引:0
|
作者
Gonzalez, Minerva [1 ]
Margueron, Samuel [1 ]
Murauskas, Tomas [1 ]
Boulet, Pascal [2 ]
Gauthier-Manuel, Ludovic [1 ]
Dulmet, Bernard [1 ]
Bartasyte, Ausrine [1 ,3 ]
机构
[1] Univ Franche Comte, CNRS UMR 6174, FEMTO ST Inst, ENSMM, F-25030 Besancon, France
[2] Univ Lorraine, Inst Jean Lamour, CNRS, UMR 7198, F-54011 Nancy, France
[3] Inst Univ France, F-75005 Paris, France
关键词
Li stoichiometry; LiTaO3 single crystals; Raman spectroscopy; vapor transport equilibration; LITHIUM TANTALATE; STOICHIOMETRIC LITAO3; OFF-CONGRUENT; SURFACE-COMPOSITION; DOMAIN REVERSAL; LINBO3; GROWTH; NIOBATE; DEPENDENCE; NONSTOICHIOMETRY;
D O I
10.1002/pssa.202400129
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of key parameters such as time, temperature, and equilibration powder concentration in vapor transport equilibration (VTE) treatment on the Li2O content of initially congruent X-, Y-, and Z-cut LiTaO3 crystals is experimentally investigated. The Li2O content across the thickness of the crystal is estimated by Raman spectroscopy with accuracy of 0.05-0.15 mol%. The Li2O loss from equilibration powders has been monitored as a function of treatment temperature and duration. The results show that the Li2O content in the crystal nonlinearly depends on the equilibration powder composition and that homogeneous stoichiometric LiTaO3 crystals can be obtained by treatment for at least 36h at 1250 degrees C in Li2O-rich atmosphere, created by powders containing >54 mol% of Li2O. The anisotropic Li+ diffusion coefficients and its activation energy are also experimentally estimated. Finally, the VTE conditions are defined for the production of different cuts of LiTaO3 crystals with controlled homogeneous Li2O nonstoichiometry in the range from subcongruent to stoichiometric compositions.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Accurate measurements of the acoustical physical constants of LiNbO3 and LiTaO3 single crystals
    Kushibiki, J
    Takanaga, I
    Arakawa, M
    Sannomiya, T
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1999, 46 (05) : 1315 - 1323
  • [42] EPR study of two Cr3+ defect centers in LiTaO3 single crystals
    Ahn, SW
    Rudowicz, C
    Choh, SH
    Han, SY
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1997, 30 (01) : 99 - 102
  • [43] Measurement of electro-optic coefficients of Stoichiometric LiTaO3 prepared by Vapor Transport Equilibrium
    Tian, L
    Gopalan, V
    2005 Conference on Lasers & Electro-Optics (CLEO), Vols 1-3, 2005, : 223 - 225
  • [44] HUMIDITY DEPENDENCE OF SURFACE RESISTANCES OF LINBO3 AND LITAO3 SINGLE-CRYSTALS
    MAEDA, M
    SUZUKI, I
    SAKIYAMA, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1992, 31 (9B): : 3229 - 3231
  • [45] ESR of Mn2+ in ferroelectric LiTaO3 and LiNbO3 single crystals
    Danner, J. C.
    Ranon, U.
    Stamires, D. N.
    CHEMICAL PHYSICS LETTERS, 1968, 2 (08) : 605 - 606
  • [46] Analysis of cracking of lithium tantalate (LiTaO3) single crystals due to thermal stress
    Miyazaki, N.
    Koizumi, N.
    JOURNAL OF MATERIALS SCIENCE, 2006, 41 (19) : 6313 - 6321
  • [47] Analysis of cracking of lithium tantalate (LiTaO3) single crystals due to thermal stress
    N. Miyazaki
    N. Koizumi
    Journal of Materials Science, 2006, 41 : 6313 - 6321
  • [48] DEUTERIUM DIFFUSION AND MAGNETIC-RESONANCE INVESTIGATIONS IN LITAO3 SINGLE-CRYSTALS
    GONZALEZ, R
    HANTEHZADEH, R
    CHEN, CY
    HALLIBURTON, LE
    CHEN, Y
    PHYSICAL REVIEW B, 1989, 39 (02): : 1302 - 1306
  • [49] Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals
    Hu, Pengchao
    Zhang, Lianhan
    Xiong, Jing
    Yin, Jigang
    Zhao, Chengchun
    He, Xiaoming
    Hang, Yin
    OPTICAL MATERIALS, 2011, 33 (11) : 1677 - 1680
  • [50] Thermal hysteresis of electromechanical characteristics of Y + 42° cut LiTaO3 single crystals
    M. N. Palatnikov
    V. A. Sandler
    N. V. Sidorov
    O. V. Makarova
    Inorganic Materials, 2017, 53 : 708 - 712