Steel Surface Defect Detection Based on Improved YOLOv7

被引:0
|
作者
Li, Ming [1 ]
Wei, Lisheng [2 ]
Zheng, Bowen [1 ]
机构
[1] Anhui Polytech Univ, Sch Elect Engn, Wuhu, Peoples R China
[2] Anhui Key Lab Elect Drive & Control, Wuhu, Peoples R China
关键词
target detection; defect detection; YOLOv7; GAMAttention; loss function;
D O I
10.1109/ICCCR61138.2024.10585576
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming at the current problem of steel surface defect detection with low accuracy and slow speed, which can easily lead to misdetection and omission, an algorithm for steel surface defect detection based on improved YOLOv7 is proposed. Firstly, the GAM (Global Attention Mechanism) attention mechanism is introduced, while CNeB and C3C2 are added to improve the feature extraction ability of the model by reducing the information approximation and amplifying the global interaction representation. Secondly, the WIoU (Wise-IoU) loss function is used to improve the convergence speed at the late stage of model training. Finally, the improved YOLOv7 is compared with other models. The experimental results show that the algorithm of this paper has an average detection accuracy (mAP) of 72.9% on the NEU-DET dataset, which is 4.1% higher compared with the original YOLOv7 algorithm, and the detection time is reduced by 63.6% under the same conditions, which verifies the effectiveness and feasibility of this paper's algorithm, and it has a certain value of application in industrial applications.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 50 条
  • [41] Improved Yolov7-tiny Algorithm for Steel Surface Defect Detection
    Qi, Xiangming
    Dong, Xu
    Computer Engineering and Applications, 2023, 59 (12) : 176 - 183
  • [42] A fast defect detection method for PCBA based on YOLOv7
    Liu, Shugang
    Chen, Jialong
    Yu, Qiangguo
    Zhan, Jie
    Duan, Linan
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2024, 18 (08): : 2199 - 2213
  • [43] Optimizing YOLOv7 for Semiconductor Defect Detection
    Dehaerne, Enrique
    Dey, Bappaditya
    Halder, Sandip
    De Gendt, Stefan
    METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVII, 2023, 12496
  • [44] YOLOv7-EAS: A Small Target Detection of Camera Module Surface Based on Improved YOLOv7
    Zou, Huatao
    He, Gang
    Yao, Yuan
    Zhu, Feng
    Zhou, Yang
    Chen, Xuan
    ADVANCED THEORY AND SIMULATIONS, 2023, 6 (11)
  • [45] Small-modulus worms surface defect detection method based on YOLOv7
    Li, Yan
    Zheng, Peng
    Yu, Menghao
    Li, Jicun
    He, Qingze
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (05)
  • [46] Steel surface defect detection based on improved YOLOv8
    Lu, Xin-ya
    Qu, Mei-xia
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [47] Detection of Small Targets in Photovoltaic Cell Defect Polarization Imaging Based on Improved YOLOv7
    Wang, Haixia
    Wang, Fangbin
    Gong, Xue
    Zhu, Darong
    Wang, Ruinan
    Wang, Ping
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [48] A new small target defect detection algorithm for solar panels based on improved YOLOV7
    Ren, Qi'ao
    Zhang, Yang
    Wen, Long
    NONDESTRUCTIVE TESTING AND EVALUATION, 2025,
  • [49] AWUCD-Net: The Armored Wire Umbilical Cable Surface Defect Detection Algorithm Based on Improved YOLOv7
    Chen, Du
    Jin, Yongping
    IEEE ACCESS, 2024, 12 : 167559 - 167574
  • [50] Night target detection algorithm based on improved YOLOv7
    Bowen, Zheng
    Huacai, Lu
    Shengbo, Zhu
    Xinqiang, Chen
    Hongwei, Xing
    SCIENTIFIC REPORTS, 2024, 14 (01):