ON THE GEOMETRY OF A PAIR OF FOLIATIONS AND A CONFORMAL INVARIANT

被引:0
|
作者
Kalina, Jerzy [1 ]
Kozlowski, Wojciech [2 ]
Pierzchalski, Antoni [2 ]
机构
[1] Lodz Univ Technol, Inst Math, Wolczanska 215, PL-90924 Lodz, Poland
[2] Univ Lodz, Fac Math & Comp Sci, Banacha 22, PL-90238 Lodz, Poland
关键词
Bott connection; orthogonal foliations; conformal invariant; MIXED SCALAR CURVATURE;
D O I
10.2748/tmj.20230105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A pair of mutually orthogonal complementary foliations of a Riemanian manifold (M, g) is considered. A geometry of such the pair is examined for a suitable torsion-free connection arising from the Bott connection. The connection has a number of nice geometric properties, however, it is not a metric one. The metrization leads to a connection with torsion. This metrized connection is a unique affine connection adapted to each of the foliations and with the torsion inducing selfadjoint endomorphisms of the tangent bundles (Theorem 1.1). Investigation of the geometry of the connection (Lemma 5.1) leads to a tensor which is a mixed measure of the "lack of the symmetry" of the Weingarten operator, so it encodes the extrinsic geometry of both foliations. This tensor is also a conformal invariant (Theorem 1.2).
引用
收藏
页码:293 / 315
页数:23
相关论文
共 50 条
  • [41] Geometry of deformed exponential families: Invariant, dually-flat and conformal geometries
    Amari, Shun-ichi
    Ohara, Atsumi
    Matsuzoe, Hiroshi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (18) : 4308 - 4319
  • [42] FOLIATIONS IN SYMPLECTIC-GEOMETRY
    DAZORD, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (14): : 489 - 491
  • [43] ASYMPTOTIC GEOMETRY BY ANOSOV FOLIATIONS
    GRIMALDI, R
    PASSANTE, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5A (03): : 321 - 329
  • [44] Riemannian foliations of bounded geometry
    Alvarez Lopez, Jesus A.
    Kordyukov, Yuri A.
    Leichtnam, Eric
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (14-15) : 1589 - 1608
  • [45] ASYMPTOTIC GEOMETRY FOR ANOSOV FOLIATIONS
    GRIMALDI, R
    PASSANTE, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (09): : 275 - 276
  • [46] Transverse noncommutative geometry of foliations
    Benameur, Moulay-Tahar
    Heitsch, James L.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 134 : 161 - 194
  • [47] On Geometry of Foliations of Codimension 1
    Bayturaev A.M.
    Journal of Mathematical Sciences, 2020, 245 (3) : 403 - 410
  • [48] Problems of Extrinsic Geometry of Foliations
    Rovenski V.Y.
    Journal of Mathematical Sciences, 2023, 276 (3) : 391 - 399
  • [49] TORUS INVARIANT TRANSVERSE KAHLER FOLIATIONS
    Ishida, Hiroaki
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (07) : 5137 - 5155
  • [50] INVARIANT FOLIATIONS FOR RANDOM DYNAMICAL SYSTEMS
    Li, Ji
    Lu, Kening
    Bates, Peter W.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) : 3639 - 3666