Consumer Segmentation and Decision: Explainable Machine Learning Insights

被引:1
|
作者
Wen, Zhanming [1 ]
Lin, Weizhen [1 ]
Liu, Hongwei [1 ]
机构
[1] Guangdong Univ Technol, Sch Management, Longdong Campus,161 Yinglong Rd, Guangzhou 510520, Guangdong, Peoples R China
关键词
Consumers; segmentation; purchase decision; machine learning; shapely additive explanations (SHAP); PRODUCT QUALITY; INVOLVEMENT; REVIEWS; SEARCH; IMPACT;
D O I
10.1080/08874417.2024.2386540
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The e-commerce market is experiencing a period of rapid growth, with online shopping becoming a prevalent consumer behavior. However, the challenge of identifying and segmenting high-value customer groups, and subsequently enhancing the conversion rate of purchases made on the shop's platform, has remained a significant obstacle for merchants engaged in e-commerce. This study presents a novel approach that combines consumer involvement theory, quality signaling theory and consumer heterogeneity theory to develop a multi-algorithmic, interpretable machine learning model based on shapely additive explanations (SHAP). The results revealed the existence of four distinct consumer groups: the comprehensively involved, interactive, reading-oriented, and low-involvement groups. Comprehensively involved and interactive consumers have the highest purchase conversion rate and should be given priority attention. This study addresses the limitations of single theoretical perspective and "black box" problem of machine learning models for decision-making behavior, and can bring management insights for merchants to improve shop operation.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Explainable Machine Learning via Argumentation
    Prentzas, Nicoletta
    Pattichis, Constantinos
    Kakas, Antonis
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT III, 2023, 1903 : 371 - 398
  • [22] Explainable machine learning in materials science
    Xiaoting Zhong
    Brian Gallagher
    Shusen Liu
    Bhavya Kailkhura
    Anna Hiszpanski
    T. Yong-Jin Han
    npj Computational Materials, 8
  • [23] Explainable machine learning for diffraction patterns
    Nawaz, Shah
    Rahmani, Vahid
    Pennicard, David
    Setty, Shabarish Pala Ramakantha
    Klaudel, Barbara
    Graafsma, Heinz
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2023, 56 : 1494 - 1504
  • [24] Explainable machine learning in materials science
    Zhong, Xiaoting
    Gallagher, Brian
    Liu, Shusen
    Kailkhura, Bhavya
    Hiszpanski, Anna
    Han, T. Yong-Jin
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [25] eXplainable Cooperative Machine Learning with NOVA
    Baur, Tobias
    Heimerl, Alexander
    Lingenfelser, Florian
    Wagner, Johannes
    Valstar, Michel F.
    Schuller, Bjoern
    Andre, Elisabeth
    KUNSTLICHE INTELLIGENZ, 2020, 34 (02): : 143 - 164
  • [26] Principles and Practice of Explainable Machine Learning
    Belle, Vaishak
    Papantonis, Ioannis
    FRONTIERS IN BIG DATA, 2021, 4
  • [27] Explainable Machine Learning for Trustworthy AI
    Giannotti, Fosca
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2022, 356 : 3 - 3
  • [28] Explainable Machine Learning for Fraud Detection
    Psychoula, Ismini
    Gutmann, Andreas
    Mainali, Pradip
    Lee, S. H.
    Dunphy, Paul
    Petitcolas, Fabien A. P.
    COMPUTER, 2021, 54 (10) : 49 - 59
  • [29] Explainable machine learning models with privacy
    Bozorgpanah, Aso
    Torra, Vicenc
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2024, 13 (01) : 31 - 50
  • [30] eXplainable Cooperative Machine Learning with NOVA
    Tobias Baur
    Alexander Heimerl
    Florian Lingenfelser
    Johannes Wagner
    Michel F. Valstar
    Björn Schuller
    Elisabeth André
    KI - Künstliche Intelligenz, 2020, 34 : 143 - 164