ContraNovo: A Contrastive Learning Approach to Enhance De Novo Peptide Sequencing

被引:0
|
作者
Jin, Zhi [1 ,2 ]
Xu, Sheng [1 ,3 ]
Zhang, Xiang [1 ,4 ]
Ling, Tianze [5 ]
Dong, Nanqing [1 ]
Ouyang, Wanli [1 ]
Gao, Zhiqiang [1 ]
Chang, Cheng [5 ]
Sun, Siqi [1 ,3 ]
机构
[1] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
[2] Soochow Univ, Dept Comp Sci, Suzhou, Peoples R China
[3] Fudan Univ, Res Inst Intelligent Complex Syst, Shanghai, Peoples R China
[4] Univ British Columbia, Vancouver, BC, Canada
[5] Natl Ctr Prot Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
De novo peptide sequencing from mass spectrometry (MS) data is a critical task in proteomics research. Traditional de novo algorithms have encountered a bottleneck in accuracy due to the inherent complexity of proteomics data. While deep learning-based methods have shown progress, they reduce the problem to a translation task, potentially overlooking critical nuances between spectra and peptides. In our research, we present ContraNovo, a pioneering algorithm that leverages contrastive learning to extract the relationship between spectra and peptides and incorporates the mass information into peptide decoding, aiming to address these intricacies more efficiently. Through rigorous evaluations on two benchmark datasets, ContraNovo consistently outshines contemporary state-of-the-art solutions, underscoring its promising potential in enhancing de novo peptide sequencing.
引用
收藏
页码:144 / 152
页数:9
相关论文
共 50 条
  • [21] NovoHCD: De novo Peptide Sequencing From HCD Spectra
    Yan, Yan
    Kusalik, Anthony J.
    Wu, Fang-Xiang
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2014, 13 (02) : 65 - 72
  • [22] Probabilistic de novo peptide sequencing with doubly charged ions
    Peter, Hansruedi
    Fischer, Bernd
    Buhmann, Joachim M.
    PATTERN RECOGNITION, PROCEEDINGS, 2006, 4174 : 424 - 433
  • [23] NovoExD: De novo Peptide Sequencing for ETD/ECD Spectra
    Yan, Yan
    Kusalik, Anthony J.
    Wu, Fang-Xiang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (02) : 337 - 344
  • [24] De Novo Mass Spectrometry Peptide Sequencing with a Transformer Model
    Yilmaz, Melih
    Fondrie, William E.
    Bittremieux, Wout
    Oh, Sewoong
    Noble, William Stafford
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [25] NovoHMM: A hidden Markov model for de novo peptide sequencing
    Fischer, B
    Roth, V
    Roos, F
    Grossmann, J
    Baginsky, S
    Widmayer, P
    Gruissem, W
    Buhmann, JM
    ANALYTICAL CHEMISTRY, 2005, 77 (22) : 7265 - 7273
  • [26] LESSONS IN DE NOVO PEPTIDE SEQUENCING BY TANDEM MASS SPECTROMETRY
    Medzihradszky, Katalin F.
    Chalkley, Robert J.
    MASS SPECTROMETRY REVIEWS, 2015, 34 (01) : 43 - 63
  • [27] A residual network for de novo peptide sequencing with attention mechanism
    Liu, Zihang
    Zhao, Chunhui
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 1165 - 1170
  • [28] Tandem mass intensity estimation for de novo peptide sequencing
    Loukil, Hatem
    2018 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2018, : 91 - 96
  • [29] Dimethyl Isotope Labeling Assisted De Novo Peptide Sequencing
    Hennrich, Marco L.
    Mohammed, Shabaz
    Altelaar, A. F. Maarten
    Heck, Albert J. R.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2010, 21 (12) : 1957 - 1965
  • [30] Peptide de novo sequencing of mixture tandem mass spectra
    Gorshkov, Vladimir
    Hotta, Stephanie Yuki Kolbeck
    Verano-Braga, Thiago
    Kjeldsen, Frank
    PROTEOMICS, 2016, 16 (18) : 2470 - 2479