Calogero model for the non-Abelian quantum Hall effect

被引:0
|
作者
Bourgine, Jean-Emile [1 ]
Matsuo, Yutaka [2 ,3 ,4 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Tokyo, Dept Phys, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
[3] Univ Tokyo, Transscale Quantum Sci Inst, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
[4] Univ Tokyo, Math & Informat Ctr, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
关键词
INTEGRABLE SYSTEMS; INFINITE SYMMETRY; BRANCHING-RULES; WZW MODELS; COMPUTATION; ALGEBRAS; DUALITY;
D O I
10.1103/PhysRevB.109.155158
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A model of the non-Abelian fractional quantum Hall effect is obtained from the diagonalization of the matrix model proposed by Dorey, Tong, and Turner (DTT). The Hamiltonian is reminiscent of a spin Calogero-Moser model but involves higher-order symmetric representations of the non-Abelian symmetry. We derive the energy spectrum and show that the Hamiltonian has a triangular action on a certain class of wave functions with a free-fermion expression. We deduce the expression of the ground-state eigenfunctions and show that they solve a Knizhnik-Zamolodchikov equation. Finally, we discuss the emergence of Kac-Moody symmetries in the large-N limit using the level-rank duality, and we confirm the results obtained previously by DTT.
引用
下载
收藏
页数:23
相关论文
共 50 条
  • [31] K-matrices for non-Abelian quantum Hall states
    Ardonne, E
    Bouwknegt, P
    Guruswamy, S
    Schoutens, K
    PHYSICAL REVIEW B, 2000, 61 (15): : 10298 - 10302
  • [32] The model for non-Abelian field topology for the multilayer fractional quantum anomalous Hall device
    Shen, Jie
    Dong, Wen Qi
    Shi, Xuewei
    Wang, Jing
    Wang, Yang
    Liu, Han Min
    FRONTIERS IN PHYSICS, 2022, 10
  • [33] Clustering Properties and Model Wave Functions for Non-Abelian Fractional Quantum Hall Quasielectrons
    Bernevig, B. Andrei
    Haldane, F. D. M.
    PHYSICAL REVIEW LETTERS, 2009, 102 (06)
  • [34] The model for non-Abelian field topology for the multilayer fractional quantum anomalous Hall device
    Shen, Jie
    Dong, Wen Qi
    Shi, Xuewei
    Wang, Jing
    Wang, Yang
    Liu, Han Min
    Frontiers in Physics, 2022, 10
  • [35] Prediction of non-Abelian fractional quantum Hall effect at ν=2+4/11
    Bose, Koyena
    Balram, Ajit C.
    PHYSICAL REVIEW B, 2023, 107 (23)
  • [36] Quantum Hall-like effect for cold atoms in non-Abelian gauge potentials
    Goldman, N.
    Gaspard, P.
    EPL, 2007, 78 (06)
  • [37] Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states
    Barkeshli, Maissam
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2011, 84 (11):
  • [38] Fractionalizing Majorana Fermions: Non-Abelian Statistics on the Edges of Abelian Quantum Hall States
    Lindner, Netanel H.
    Berg, Erez
    Refael, Gil
    Stern, Ady
    PHYSICAL REVIEW X, 2012, 2 (04):
  • [39] Effective Abelian theory from a non-Abelian topological order in the ν=2/5 fractional quantum Hall effect
    Yang, Bo
    Wu, Ying-Hai
    Papic, Zlatko
    PHYSICAL REVIEW B, 2019, 100 (24)
  • [40] Abelian and non-Abelian states in ν=2/3 bilayer fractional quantum Hall systems
    Peterson, Michael R.
    Wu, Yang-Le
    Cheng, Meng
    Barkeshli, Maissam
    Wang, Zhenghan
    Das Sarma, Sankar
    PHYSICAL REVIEW B, 2015, 92 (03):