Calogero model for the non-Abelian quantum Hall effect

被引:0
|
作者
Bourgine, Jean-Emile [1 ]
Matsuo, Yutaka [2 ,3 ,4 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Tokyo, Dept Phys, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
[3] Univ Tokyo, Transscale Quantum Sci Inst, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
[4] Univ Tokyo, Math & Informat Ctr, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
关键词
INTEGRABLE SYSTEMS; INFINITE SYMMETRY; BRANCHING-RULES; WZW MODELS; COMPUTATION; ALGEBRAS; DUALITY;
D O I
10.1103/PhysRevB.109.155158
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A model of the non-Abelian fractional quantum Hall effect is obtained from the diagonalization of the matrix model proposed by Dorey, Tong, and Turner (DTT). The Hamiltonian is reminiscent of a spin Calogero-Moser model but involves higher-order symmetric representations of the non-Abelian symmetry. We derive the energy spectrum and show that the Hamiltonian has a triangular action on a certain class of wave functions with a free-fermion expression. We deduce the expression of the ground-state eigenfunctions and show that they solve a Knizhnik-Zamolodchikov equation. Finally, we discuss the emergence of Kac-Moody symmetries in the large-N limit using the level-rank duality, and we confirm the results obtained previously by DTT.
引用
下载
收藏
页数:23
相关论文
共 50 条
  • [1] Hall viscosity in the non-Abelian quantum Hall matrix model
    Lapa, Matthew F.
    Turner, Carl
    Hughes, Taylor L.
    Tong, David
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [2] Matrix model for non-Abelian quantum Hall states
    Dorey, Nick
    Tong, David
    Turner, Carl
    PHYSICAL REVIEW B, 2016, 94 (08)
  • [3] Non-Abelian Quantum Hall Effect in Topological Flat Bands
    Wang, Yi-Fei
    Yao, Hong
    Gu, Zheng-Cheng
    Gong, Chang-De
    Sheng, D. N.
    PHYSICAL REVIEW LETTERS, 2012, 108 (12)
  • [4] Anatomy of Abelian and Non-Abelian Fractional Quantum Hall States
    Bernevig, B. Andrei
    Regnault, N.
    PHYSICAL REVIEW LETTERS, 2009, 103 (20)
  • [5] Aharonov-Bohm effect in the non-Abelian quantum Hall fluid
    Georgiev, Lachezar S.
    Geller, Michael R.
    PHYSICAL REVIEW B, 2006, 73 (20)
  • [6] Non-Abelian Parton Fractional Quantum Hall Effect in Multilayer Graphene
    Wu, Ying-Hai
    Shi, Tao
    Jain, Jainendra K.
    NANO LETTERS, 2017, 17 (08) : 4643 - 4647
  • [7] NON-ABELIAN ADIABATIC PHASES AND THE FRACTIONAL QUANTUM HALL-EFFECT
    SEMENOFF, GW
    SODANO, P
    PHYSICAL REVIEW LETTERS, 1986, 57 (10) : 1195 - 1198
  • [8] WILSON LOOPS AND NON-ABELIAN STATISTICS IN THE QUANTUM HALL-EFFECT
    STONE, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (17): : 2875 - 2891
  • [9] On the Non-Abelian Field Explanation for Fractorial Quantum Anomalous Hall Effect
    Shen, Jie
    Yu, Jian-Guo
    INTERNATIONAL CONFERENCE ON ELECTRONIC AND ELECTRICAL ENGINEERING (CEEE 2014), 2014, : 26 - 41
  • [10] Quantum groups and non-Abelian braiding in quantum Hall systems
    Slingerland, JK
    Bais, FA
    NUCLEAR PHYSICS B, 2001, 612 (03) : 229 - 290