Model-Based Optimization of Superconducting Qubit Readout

被引:4
|
作者
Bengtsson, Andreas [1 ]
Opremcak, Alex [1 ]
Khezri, Mostafa [1 ]
Sank, Daniel [1 ]
Bourassa, Alexandre [1 ]
Satzinger, Kevin J. [1 ]
Hong, Sabrina [1 ]
Erickson, Catherine [1 ]
Lester, Brian J. [1 ]
Miao, Kevin C. [1 ]
Korotkov, Alexander N. [1 ,2 ]
Kelly, Julian [1 ]
Chen, Zijun [1 ]
V. Klimov, Paul [1 ]
机构
[1] Google Quantum AI, Santa Barbara, CA 93111 USA
[2] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
关键词
D O I
10.1103/PhysRevLett.132.100603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurement is an essential component of quantum algorithms, and for superconducting qubits it is often the most error prone. Here, we demonstrate model-based readout optimization achieving low measurement errors while avoiding detrimental side effects. For simultaneous and midcircuit measurements across 17 qubits, we observe 1.5% error per qubit with a 500 ns end-to-end duration and minimal excess reset error from residual resonator photons. We also suppress measurement-induced state transitions achieving a leakage rate limited by natural heating. This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Equivalence of flexible stripline and coaxial cables for superconducting qubit control and readout pulses
    Monarkha, V. Y.
    Simbierowicz, S.
    Borrelli, M.
    van Gulik, R.
    Drobotun, N.
    Kuitenbrouwer, D.
    Bouman, D.
    Datta, D.
    Eskelinen, P.
    Mannila, E.
    Kaikkonen, J.
    Vesterinen, V.
    Govenius, J.
    Lake, R. E.
    APPLIED PHYSICS LETTERS, 2024, 124 (22)
  • [42] Fast Readout and Reset of a Superconducting Qubit Coupled to a Resonator with an Intrinsic Purcell Filter
    Sunada, Y.
    Kono, S.
    Ilves, J.
    Tamate, S.
    Sugiyama, T.
    Tabuchi, Y.
    Nakamura, Y.
    PHYSICAL REVIEW APPLIED, 2022, 17 (04)
  • [43] Reducing the error rate of a superconducting logical qubit using analog readout information
    Ali, Hany
    Marques, Jorge
    Crawford, Ophelia
    Majaniemi, Joonas
    Serra-Peralta, Marc
    Byfield, David
    Varbanov, Boris
    Terhal, Barbara M.
    DiCarlo, Leonardo
    Campbell, Earl T.
    PHYSICAL REVIEW APPLIED, 2024, 22 (04):
  • [44] Modeling and Harmonic Balance Analysis of Superconducting Parametric Amplifiers for Qubit Readout: A Tutorial
    Shiri, Daryoush
    Nilsson, Hampus Renberg
    Telluri, Pavan
    Roudsari, Anita Fadavi
    Shumeiko, Vitaly
    Fager, Christian
    Delsing, Per
    IEEE MICROWAVE MAGAZINE, 2024, 25 (11) : 54 - 73
  • [45] Model Inversion Networks for Model-Based Optimization
    Kumar, Aviral
    Levine, Sergey
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [46] Qubit dispersive readout scheme with a microstrip superconducting quantum interference device amplifier
    Michotte, S.
    APPLIED PHYSICS LETTERS, 2009, 94 (12)
  • [47] Single-sideband modulator for frequency domain multiplexing of superconducting qubit readout
    Chapman, Benjamin J.
    Rosenthal, Eric I.
    Kerckhoff, Joseph
    Vale, Leila R.
    Hilton, Gene C.
    Lehnert, K. W.
    APPLIED PHYSICS LETTERS, 2017, 110 (16)
  • [48] MODEL-BASED PROCESS AND PRODUCT OPTIMIZATION
    RITAPAL, K
    ERDOL & KOHLE ERDGAS PETROCHEMIE, 1995, 48 (03): : 120 - 121
  • [49] Model-based Optimization with Concept Drifts
    Richter, Jakob
    Shi, Junjie
    Chen, Jian-Jia
    Rahnenfuehrer, Joerg
    Lang, Michel
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 877 - 885
  • [50] On the optimization problem of model-based monitoring
    L. Ginzinger
    M. N. Sahinkaya
    B. Heckmann
    P. Keogh
    H. Ulbrich
    Science China Technological Sciences, 2011, 54 : 1095 - 1106