Multiply robust estimation of principal causal effects with noncompliance and survival outcomes
被引:0
|
作者:
Cheng, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Yale Sch Publ Hlth, Dept Biostat, Suite 200,Room 229,135 Coll St, New Haven, CT 06510 USAYale Sch Publ Hlth, Dept Biostat, Suite 200,Room 229,135 Coll St, New Haven, CT 06510 USA
Cheng, Chao
[1
]
Guo, Yueqi
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Stat Sci, Durham, NC USAYale Sch Publ Hlth, Dept Biostat, Suite 200,Room 229,135 Coll St, New Haven, CT 06510 USA
Guo, Yueqi
[2
]
Liu, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Stat Sci, Durham, NC USAYale Sch Publ Hlth, Dept Biostat, Suite 200,Room 229,135 Coll St, New Haven, CT 06510 USA
Liu, Bo
[2
]
Wruck, Lisa
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Sch Med, Dept Biostat & Bioinformat, Durham, NC USA
Duke Clin Res Inst, Durham, NC USAYale Sch Publ Hlth, Dept Biostat, Suite 200,Room 229,135 Coll St, New Haven, CT 06510 USA
Wruck, Lisa
[3
,4
]
Li, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Yale Sch Publ Hlth, Dept Biostat, Suite 200,Room 229,135 Coll St, New Haven, CT 06510 USA
Duke Univ, Dept Stat Sci, Durham, NC USAYale Sch Publ Hlth, Dept Biostat, Suite 200,Room 229,135 Coll St, New Haven, CT 06510 USA
Li, Fan
[1
,2
]
Li, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Yale Sch Publ Hlth, Dept Biostat, Suite 200,Room 229,135 Coll St, New Haven, CT 06510 USA
Duke Univ, Dept Stat Sci, Durham, NC USAYale Sch Publ Hlth, Dept Biostat, Suite 200,Room 229,135 Coll St, New Haven, CT 06510 USA
Li, Fan
[1
,2
]
机构:
[1] Yale Sch Publ Hlth, Dept Biostat, Suite 200,Room 229,135 Coll St, New Haven, CT 06510 USA
[2] Duke Univ, Dept Stat Sci, Durham, NC USA
[3] Duke Univ, Sch Med, Dept Biostat & Bioinformat, Durham, NC USA
Treatment noncompliance and censoring are two common complications in clinical trials. Motivated by the ADAPTABLE pragmatic clinical trial, we develop methods for assessing treatment effects in the presence of treatment noncompliance with a right-censored survival outcome. We classify the participants into principal strata, defined by their joint potential compliance status under treatment and control. We propose a multiply robust estimator for the causal effects on the survival probability scale within each principal stratum. This estimator is consistent even if one, sometimes two, of the four working models-on the treatment assignment, the principal strata, censoring, and the outcome-is misspecified. A sensitivity analysis strategy is developed to address violations of key identification assumptions, the principal ignorability and monotonicity. We apply the proposed approach to the ADAPTABLE trial to study the causal effect of taking low- versus high-dosage aspirin on all-cause mortality and hospitalization from cardiovascular diseases.
机构:
Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI USA
Xu, Tinghui
Zhao, Jiwei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI USA
Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53726 USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI USA